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Abstract: We consider the problem of finding the matching map between
two sets of d-dimensional vectors from noisy observations, where the second
set contains outliers.The matching map is then an injection, which can be
consistently detected only if the vectors of the second set are well separated.
The main result shows that, in the high-dimensional setting, a detection
region of unknown injection may be characterized by the sets of vectors for
which the inlier-inlier distance is of order at least d1/4 and the inlier-outlier
distance is of order at least d1/2. These rates are achieved using the matching
minimizing the sum of logarithms of distances between matched pairs of
points. We also prove lower bounds establishing optimality of these rates.
Finally, we report the results of numerical experiments on both synthetic
and real world data that illustrate our theoretical results and provide further
insight into the properties of the algorithms studied in this work.

MSC2020 subject classifications: Primary 62H12; secondary 62F35.
Keywords and phrases: feature matching, minimax optimality, robust-
ness.

1 Introduction

Finding the best match between two clouds of points is a problem encountered
in many real problems. In computer vision, one can look for correspondences
between two sets of local descriptors extracted from two images. In text analysis,
one can be interested in matching vector representations of the words of two
similar texts, potentially in two different languages. The goal of the present
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work is to gain theoretical understanding of the statistical limits of the matching
problem.

In the sequel, we use the notation [n] = {1, . . . , n} for any integer n, and
define ∥ · ∥ as the Euclidean norm in Rd. Assume that two independent sequences
X = (Xi; i ∈ [n]) and Y = (Yi; i ∈ [n]) of independent vectors are generated
such that Xi and Yi are drawn from the same distribution Pi on Rd, for every
i ∈ [n]. The statistician observes the sequence X and a shuffled version X# of the
sequence Y . More precisely, X# is such that X#

i = Yπ∗(i) for some unobserved
permutation π∗. The goal of matching is to infer the permutation π∗ from data
(X,X#). In the case of Gaussian distributions Pi, this problem has been studied
in [9, 10]. Clearly, consistent detection of the matching map π∗ is impossible
if there are two data generating distributions Pi and Pj that are very close. In
[9, 10], a precise quantification of the separation between these distributions is
given that enables consistent detection of π∗. Furthermore, it is shown that the
permutation minimizing the sum of logarithms of pairwise distances between
the elements of X and the elements of the shuffled version X# is an optimal
detector of π∗.

In this paper, we extend the model studied in [10] to the case when the
set X# is contaminated by outliers. The number of outliers is supposed to be
known and is equal to m − n, where n = |X| and m = |X#| are the sizes
of considered two sequences, however the indices of the outliers are unknown.
All the distributions are assumed in this paper to be spherical Gaussian, al-
though all the probabilistic tools used in the proofs have their sub-Gaussian
counterparts. Thus, we consider that two spherical Gaussian distributions 1

P1 = Nd(µ1, σ
2
1Id) and P2 = Nd(µ2, σ

2
2Id) are well separated if the “distance

to noise ratio” κ(P1, P2) = ∥µ1 − µ2∥/
√
σ2
1 + σ2

2 is large. Main findings of
[10], in terms of smallest separation distance κ̄ = mini̸=j κ(Pi, Pj) are sum-
marized in the second columns of Table 1. Likewise, the last column of the
table provides a summary of the contributions of the present paper in terms
of κ̄in-in = mini ̸=j κ(Pi, Pj) and κ̄in-out = mini,j κ(Pi, Qj), where Q1, . . . , Qm−n

are the distributions of the outliers.
An unexpected finding of this work is that the “degree” of heteroscedasticity

of the model has a strong impact on the separation distances and the detection
regions (sets of values of (κ̄in-in, κ̄in-out) for which it is possible to detect the
feature map π∗). This is in sharp contrast with the outlier-free case, where
consistent detection requires κ̄ to be at least of order (d log n)1/4 irrespective
from the behaviour of variances of Pi. We prove in this work that in the high
dimensional regime d ≥ c log n, which is arguably more appealing than the low
dimensional regime d ≤ c log n, the following statements are true:

• If there is no heteroscedasticity, i.e., when all the variances are equal,
consistent detection of π∗ is possible if and only if κ̄ = κ̄in-in ∧ κ̄in-out is at
least of order (d log(nm))1/4. This is the same rate as in the outlier-free
case.

• If the heteroscedasticity is mild, i.e., all the variances are of the same order,

1We use the notation Id for the d× d identity matrix
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Without outliers With outliers
[10] current paper

known σ# or
all equal σ#s

LSNS is optimal

κ̄ ≳ (d logn)1/4
LSNS is optimal [Thm. 1]

κ̄in-in ∧ κ̄in-out ≳ (d log(nm))1/4

unknown σ#

σmax/σmin ≤ C

unknown σ#

arbitrary

LSL is optimal

κ̄ ≳ (d logn)1/4

LSL is optimal [Thm. 4]

κ̄in-in ≳ (d log(nm))1/4 & κ̄in-out ≳ d1/2

LSL is optimal [Thm. 2, 3]

κ̄in-in ∧ κ̄in-out ≳ d1/2

Table 1
A brief overview of the contributions in the high-dimensional regime d ≥ c logn. The table

provides the condition on the normalized inlier-inlier distance κ̄in-in and inlier-outlier
distance κ̄in-out, making it possible to consistently detect the matching map between two sets
of d-dimensional vectors. LSL and LSNS refer to least sum of logarithms and least sum of

normalized squares, respectively.

the condition κ̄in-in ≳ (d log(nm))1/4 is the same as in the previous item,
but the stronger condition κ̄in-out ≳ d1/2 is needed for the inlier-outlier
separation distance.

• Finally, in the general heteroscedastic setting both κ̄in-in and κ̄in-out should
be at least of order d1/2. Furthermore, in all these cases consistent detection
is performed by the same procedure: the Least Sum of Logarithms (LSL).

Note also that the empirical evaluation reported in the present paper shows that
LSL is attractive not only from the theoretical but also from the practical point
of view.

Agenda Section 2 describes the framework of the vector matching problem
and introduces the terminology used throughout this paper. Precise statements
of the main theoretical results are gathered in Section 3. The prior work is briefly
discussed in Section 4. Section 5 contains numerical experiments carried out
both for synthetic and real data. A brief summary and some concluding remarks
are presented in Section 7. Proofs of all theoretical claims are deferred to the
supplemental material.

2 Problem Formulation

We begin with formalizing the problem of matching two sequences of feature
vectors (X1, . . . , Xn) and (X#

1 , . . . , X
#
m) with different sizes n and m such that

m ≥ n ≥ 2. In what follows, we assume that the observed feature vectors are
randomly generated from the model{

Xi = θi + σiξi ,

X#
j = θ#j + σ#j ξ

#
j ,

i = 1, . . . , n and j = 1, . . . ,m. (1)

In this model, illustrated in Figure 1, it is assumed that

• θ = (θ1, . . . , θn) and θ# = (θ#1 , . . . , θ
#
m) are two sequences of vectors from

Rd, corresponding to the original features, which are unavailable,
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• σ = (σ1, . . . , σn)
⊤,σ# = (σ#1 , . . . , σ

#
m)⊤ are positive real numbers corre-

sponding to the magnitudes of the noise contaminating each feature,
• ξ1, . . . , ξn and ξ#1 , . . . , ξ

#
m are two independent sequences of i.i.d. random

vectors drawn from the Gaussian distribution with zero mean and identity
covariance matrix.

The simplest special case of (1), considered in [10], corresponds to the situation
where a perfect matching exists between the two sequences θ and θ#. This means
that m = n and, for some bijective mapping π∗ : [n] → [n], θi = θ#π(i) for all

i ∈ [n]. In the general case, both X = (X1, . . . , Xn) and X# = (X#
1 , . . . , X

#
m)

may contain outliers, i.e. feature vectors that have no corresponding pair. In
such a situation, it is merely assumed that there exists a set S ⊂ [n] and an
injective mapping π∗ : S → [m] such that

θi = θ#π∗(i) and σi = σ#π∗(i), ∀ i ∈ S. (2)

In this case we say that the vectors {Xi : i ∈ [n] \S} and {X#
j : j ∈ [m] \ π∗(S)}

are outliers. The ultimate goal is to detect the feature matching map π∗.
In this work we consider the case when S = [n] and m > n. This means that

only the larger set of feature vectors, namely X#, contains outliers. Let us also
define the set Oπ∗ ≜ [m] \ Im(π∗), which contains the indices of outliers and
satisfies |Oπ∗ | = m− n. Naturally, the feature vectors contained in X, as well as
those vectors from X# that are not outliers, are called inliers.

In this formulation, the data generating distribution is defined by the parame-
ters θ#, σ# and π∗. We omit the set of parameters θ and σ, since they are auto-
matically identified using π∗, θ# and σ# by the formula (θi, σi) = (θ#π∗(i), σ

#
π∗(i))

for i ∈ [n]. Since our goal is to match the feature vectors, we focus our attention
on the problem of detecting the parameter π∗ only, considering θ# and σ# as
nuisance parameters. In what follows, we denote by Pθ#,σ#,π∗ the probability
distribution of the sequence (X1, . . . , Xn, X

#
1 , . . . , X

#
m) defined by (1) under

condition (2) with S = [n].
We are interested in designing estimators that have an expected error smaller

than a prescribed level α under the weakest possible conditions on the nuisance
parameter θ# and noise level σ#. Clearly, the problem of matching becomes
more difficult with hardly distinguishable features. To quantify this phenomenon,
we introduce the normalized separation distance κ̄in-in = κ̄in-in(θ

#,σ#, π∗) and
the normalized outlier separation distance κ̄in-out = κ̄in-out(θ

#,σ#, π∗), which
measure the minimal distance-to-noise ratio between inliers and the minimal
distance-to-noise ratio between inliers and outliers, respectively. The precise
definitions read as

κ̄in-in ≜ min
i,j ̸∈Oπ∗ ,

j ̸=i

∥θ#i − θ#j ∥
(σ#i

2 + σ#j
2)1/2

, κ̄in-out ≜ min
i ̸∈Oπ∗ ,
j∈Oπ∗

∥θ#i − θ#j ∥
(σ#i

2 + σ#j
2)1/2

. (3)
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8 X]
9

Fig 1. Illustration of the considered framework described in (1). We wish to match a set of 7
patches extracted from the first image to the 9 patches from the second image. The picture on
the left shows the locations of patches as well as the true matching map π∗ (the yellow lines).

Notice that κ̄in-in can be rewritten as

κ̄in-in = min
i,j∈[n]
i ̸=j

∥θi − θj∥
(σ2

i + σ2
j )

1/2
.

Clearly, if κ̄in-in = 0 or, κ̄in-out = 0, there are two identical feature vectors
in X#. In such a situation, assuming σi’s are all equal, the parameter π∗ is
nonidentifiable, in the sense that there exist two different permutations π∗

1 and
π∗
2 such that the distributions Pθ#,σ#,π∗

1
and Pθ#,σ#,π∗

2
coincide. Therefore, to

ensure the existence of consistent detectors of π∗ it is necessary to impose
the conditions κ̄in-in > 0 and κ̄in-out > 0. Moreover, good procedures are those
consistently detecting π∗ even if either κ̄in-in or κ̄in-out are small. We are interested
here in finding the detection boundary in terms of the order of magnitude of
(κ̄in-in, κ̄in-out). More precisely, for any given α ∈ (0, 1) we wish to find a region
Rα

n,m,d in R2 such that:

• There is an estimator π̂n,m of π∗ satisfying Pθ#,σ#,π∗(π̂ ̸= π∗) ≤ α for every

(θ#,σ#, π∗) lying in the detection region, i.e., for which (κ̄in-in, κ̄in-out) ∈
Rα

n,m,d.
• There is a constant C < 1 such that for any estimator π̄n,m of π∗, we can find

a parameter value (θ#,σ#, π∗) in the region {(θ#,σ#, π∗) : (κ̄in-in, κ̄in-out) ∈
CRα

n,m,d} such that π̄ fails to detect π∗ with a probability larger than α.

Let us make two remarks. First, note that in the outlier-free case considered in
[10], κ̄in-out is meaningless and, therefore, the detection region is one-dimensional
Rα

n,m,d. Thus, it is necessarily a half-line and is proven to be of the form

κ̄in-in ≥ C(log n/α)1/2 ∨ (d log n/α)1/4 for some universal constant C. Second, the
aforementioned definition of the detection region Rα

n,m,d does not guarantee its
uniqueness (even up to a scaling by a universal constant). This is in contrast
with the outlier-free case. To overcome this difficulty, we look for Rα

n,m,d of the
form [tin-in,+∞)× [tin-out,+∞) with the smallest possible threshold tin-out for
the normalized inlier-outlier distance κ̄in-out.
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3 Main theoretical results

In this section, we have collected the main theoretical findings of the paper. When
the noise is homoscedastic, i.e., when all σ’s are equal, the results obtained by
[10] in the outlier-free setting can be easily extended to the setting with outliers.
Therefore, in the present paper, we focus on the heteroscedastic case. For the sake
of clarity of exposition, we will present the results in the case of known variances
σ,σ# prior to investigating the more interesting case of unknown variances.

The detection regions we study below are based on the maximum profile like-
lihood estimator. The model presented in (1) has the parameter Ξ = (θ#,σ#, π),
while the observations are the sequences of feature vectors X and X#. The
negative log-likelihood of this model is given by

ℓn(Ξ; {X,X#}) =
n∑

i=1

(∥Xi − θ#π(i)∥
2
2

2σ#2π(i)
+

1

2
log(σ#2π(i))

)

+

m∑
j=1

(∥X#
j − θ#j ∥22
2σ#2j

+
1

2
log(σ#2j )

)
.

The profile negative log-likelihood is then defined as the minimum with respect
to (θ#,σ#) of the log-likelihood ℓn(Ξ; {X,X#}).

3.1 Warming up: known variances σ, σ#

One can check that the minimization with respect to θ# leads to the variance-
dependent cost function

ℓn(π,σ
#; {X,X#}) =

n∑
i=1

∥Xi −X#
π(i)∥

2

σ2
i + σ#2π(i)

+

n∑
i=1

1

2
log(σ#2π(i)) +

m∑
j=1

1

2
log(σ#2j ).

(4)

When m = n and there is no outlier, the last two sums of the last display do not
depend on π and, therefore, the maximum profile likelihood estimator of π∗ is
obtained by the Least Sum of Normalized Squares (LSNS) criterion

π̂LSNS
n,m ∈ argmin

π:[n]→[m]

n∑
i=1

∥Xi −X#
π(i)∥

2

σ2
i + σ#2π(i)

, (5)

where the minimum is over all injective mappings π : [n] → [m]. This, and the
other estimators defined in this work, can be efficiently computed using suitable
versions of the Hungarian algorithm [24, 25, 34]. As shows the next theorem, it
turns out that even when m > n, the estimator π̂LSNS

n,m defined above leads to an
optimal detection region.
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Theorem 1 (Upper bound for LSNS). Let α ∈ (0, 1) and condition (2) be fulfilled.
If the separation distances κ̄in-in and κ̄in-out corresponding to (θ#,σ#, π∗) and
defined in (3) satisfy the condition

min{κ̄in-in, κ̄in-out} ≥ 4
{(
d log(4nm/α)

)1/4 ∨ (
2 log(8nm/α)

)1/2}
(6)

then the LSNS estimator defined in (5) detects the true matching map π∗ with
probability at least 1− α, that is

Pθ#,σ#,π∗(π̂LSNS
n,m = π∗) ≥ 1− α.

The similarity—both its statement and its proof— of this result to its coun-
terpart in the outlier-free setting might suggest that the presence of outliers does
not make the problem any harder from a statistical point of view. However, this
is not true in the more appealing setting of unknown variances.

Remark 1. All the results of this subsection apply in the homoscedastic case—
when σi = σ#j for all (i, j) ∈ [n]× [m]—with unknown noise level. Indeed, in this
case, the LSNS estimator coincides with the minimizer of the sum of squared
errors and, therefore, does not depend on the noise levels.

Remark 2. Theorem 1 can be readily extended to the case where the noise
vectors Xi− θi and X#

j − θ#j are Gaussian with zero mean and general covariance

matrices, denoted respectively by Σi and Σ#
j . Then, the LSNS estimator should

be defined as the minimizer of the sum over i of the terms (Xi −X#
π(i))

⊤(Σi +

Σ#
π(i))

−1(Xi −X#
π(i)). Hence, redefining

κ̄in-in ≜ min
i,j ̸∈Oπ∗ ,j ̸=i

κij , κ̄in-out ≜ min
i ̸∈Oπ∗ ,j∈Oπ∗

κij ,

where κ2ij = (θ#i − θ#j )
⊤(Σ#

i +Σ#
j )

−1(θ#i − θ#j ), one gets exactly the result as the
one stated in Theorem 1.

Remark 3. The minimax setting considered in the present work is largely
inspired by the corresponding setting in the problem of statistical hypotheses
testing [19, 23, 48, 47, 6]. It should be noted that in many hypothesis testing
problems, one can further the results on minimax rates of separation by obtaining
sharp constants [14, 27, 12]. It would be interesting to investigate whether it is
possible or not to obtain sharp constants in the setting of this paper. To the best
of our knowledge, this question is open for other instances of multiple hypotheses
testing as well.

3.2 Detection of π∗ for unknown and arbitrary variances σ, σ#

The LSNS procedure analyzed in Theorem 1 exploits the values of known noise
variances to normalize the squares of distances between vectors Xi and X

#
π(i).

Therefore, LSNS is inapplicable in the case of unknown noise variances, unless
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the values of all σi and σ#i are equal. Instead, we consider the Least Sum of
Logarithms (LSL) estimator

π̂LSL
n,m ≜ argmin

π:[n]→[m]

n∑
i=1

log ∥Xi −X#
π(i)∥

2, (7)

where the minimum is over all injective maps π : [n] → [m]. This estimator
can be seen as the minimizer of a criterion defined as the minimum of the cost
function from (4) with respect to σ# under the constraint minj ̸∈Im(π) σ

#
j ≥ σmin,

for some fixed (but unknown) constant σmin > 0.
To provide a quick overview of what follows, let us stick in the remaining of

this paragraph to the case log(nm) = O(d) so that the right hand side of (6) is
of order

(
d log(nm)

)
1/4. Recall that in the outlier-free case, the LSL estimator

has been shown to perform as well as the LSNS while having the advantage
of not requiring the knowledge of variances σ# [10]. Somewhat unexpectedly,
the situation is significantly different in the presence of outliers. Indeed, the
best we managed to prove in the presence of outliers is that the detection of
the matching map by LSL is possible whenever min{κ̄in-in, κ̄in-out} ≥ C

√
d for

some sufficiently large constant C. The precise statement being given in the next
theorem, let us mention right away that the discrepancy between this rate

√
d

and the rate
(
d log(nm)

)
1/4 in (6) is due to the inherent hardness of the setting

and not merely an artefact of the proof. This will be made clear below.

Theorem 2 (Upper bound for LSL). Let α ∈ (0, 1/2) and condition (2) be
fulfilled. If the separation distances κ̄in-in and κ̄in-out corresponding to (θ#,σ#, π∗)
and defined by (3) satisfy

min{κ̄in-in, κ̄in-out} ≥
√
2d+ 4

{(
2d log(4nm/α)

)1/4 ∨ (
3 log(8nm/α

)1/2}
(8)

then the LSL estimator (7) detects the matching map π∗ with probability at least
1− α, that is

Pθ#,σ#,π∗(π̂LSL
n,m = π∗) ≥ 1− α.

This result is disappointing since it requires the distance between different
feature vectors to be larger than

√
2d in order to be able to consistently detect

the matching map π∗. As we show below, without any further condition (for
instance, on the noise variances), this rate cannot be improved. Furthermore,
the rate

√
d is optimal not only for LSL but also for the larger class of so called

distance based M -estimators.
We will say that an estimator π̂n of π∗ is a distance based M -estimator, if for

a sequence of non-decreasing functions ρi : R+ → R, i = 1, . . . , n, the following
is correct

π̂n ∈ argmin
π:[n]→[m]

n∑
i=1

ρi
(
∥Xi −X#

π(i)∥
)
,
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where the minimum is over all injective mappings π : [n] → [m]. We denote by
M the set of all distance based M -estimators. We show that there is indeed
a setup where κ̄in-in ∧ κ̄in-out is as large as 0.2

√
d but any estimator from M

fails to detect π∗ with probability at least 1/4. The next theorem formalizes the
described result.

Theorem 3 (Lower bound over M). Assume that m > n ≥ 4 and d ≥
422 log(4n). There exists a triplet (σ#,θ#, π∗) such that κ̄in-in = κ̄in-out =

√
d/20

and

inf
π̂∈M

Pθ#,σ#,π∗(π̂ ̸= π∗) > 1/4. (9)

The proof of this theorem, postponed to the appendix, is constructive. This
means that we exhibit a triplet (σ#,θ#, π∗) satisfying (9). Careful inspection
shows that in the case d = O(log(nm)) the same triplet satisfies κ̄in-in∧ κ̄in-out ≍√
log(nm) and (9) is still true. This implies that the order of magnitude of

the right hand side of (8) is optimal both in the high-dimensional regime
d ≥ 422 log(4n) and in the low-dimensional regime d < 422 log(4n). This shows
the optimality of LSL among all estimators from M. Note that the estimator
π̂LSNS
n,m does not belong to the family of distance based M-estimators. Furthermore,

in the low dimensional regime d = O(log(nm)), the separation rate of the LSL,√
log(nm), is the same as that of the LSNS.
The next theorem extends the result of Theorem 3 establishing the lower

bound over all injective mappings π : [n] → [m], hence implying the optimality
of the rate presented in Theorem 1. We show that even if κ̄in-in and κ̄in-out are
of order (d log(nm))1/4 ∨ (log(nm))1/2 then there are indeed scenarios in which
any estimator π̂ fails to detect π∗ with probability at least 1/3.

Theorem 4 (General lower bound). Denote κ = min{κ̄in-in, κ̄in-out}. Assume
that m > n ≥ 5 and d ≥ 16 log(nm). Then, there exists a triplet (σ#,θ#, π∗)
such that 6κ ≥ (d log(nm))1/4 and

inf
π̂

Pθ#,σ#,π∗(π̂ ̸= π∗) > 1/3,

where the infimum is taken over all injective matching maps π : [n] → [m].

In the next section we show that under some mild conditions on σ# it is
indeed possible to obtain different rates for κ̄in-in and κ̄in-out, namely we show
that if κ̄in-in ≳ d1/4 and κ̄in-out ≳ d1/2 then the LSL estimator detects correct
matching with high probability.

3.3 Detection of π∗ for unknown and mildly varying variances

The results of the last two theorems are disappointing, since they indicate
that the features should be very different from one another for detection of
the matching map to be possible. An interesting finding, presented below, is
that strong constraint can be significantly alleviated in the context of mild
heteroscedasticity. By mild heteroscedasticity we understand here the situation
in which all variances σ#i are of the same order of magnitude.
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Theorem 5 (Upper bound under mild heteroscedasticity). Let rσ = maxi,j(σ
#
i /σ

#
j ).

If the separation distances κ̄in-in and κ̄in-out defined in (3) satisfy

κ̄in-in ≥ 2
(
4d log(4nm/α)

)1/4
+ 2

(
2 log(4nm/α)

)1/2
κ̄in-out ≥

√
2(rσ − 1)d+ 2

(
4r2σd log(4nm/α)

)1/4
+ 2

(
2rσ log(4nm/α)

)1/2
,

then the LSL estimator (7) detects the matching map π∗ with probability at least
1− α, that is

Pθ#,σ#,π∗(π̂LSL
n,m = π∗) ≥ 1− α.

Note that a lower bound similar to that of Theorem 3 can be proved in the
case of mild heterescodestacity as well, showing that there is an example for
which κ̄in-in is of order d1/4, κ̄in-out is of order d

1/2 and any estimator from M
fails to detect π∗ with probability at least 1/4.

We complete this section by summarizing the joint contribution of Theorems 1
to 3 and 5. To simplify this discussion, we consider two cases: high-dimensional
case refers to d ≥ log(4nm/α) (presented in Table 1) and low-dimensional case
refers to the condition d < log(4nm/α). In the high dimensional setting with
arbitrary noise variances, the detection region for the LSL estimator is given
by {κ̄in-in ∧ κ̄in-out ≥ 15

√
d}, which is much worse than the detection region for

LSNS, {κ̄in-in ∧ κ̄in-out ≥ 8(d log(4nm/α))1/4}, obtained in the known-variance
scenario. Somewhat surprisingly, in such a setting, even a strong assumption
on the outliers, such as requiring them to be at least at a distance 0.2

√
d

of the inliers, is not enough for relaxing the assumption on the inlier-inlier
separation distance. Finally, on a positive note, in the intermediate case of mildly
varying variances, the detection region for the LSL estimator is of the form
{κ̄in-in ≥ 7(d log(4nm/α))1/4; κ̄in-out ≥ 10

√
d}. This means that if the outliers

are at a distance Ω(
√
d) of the inliers, then the LSL recovers the true matching

under the same condition on κ̄in-in as in the outlier-free setting.

4 Other related work

Measuring the quality of the various statistical procedures of decision making by
their minimal separation rates became the standard in hypotheses testing, see
the seminal papers [4, 18] and the monographs [19, 23]. Currently this approach
is widely adopted in machine learning literature [51, 50, 3, 38, 49, 8]. Beyond the
classical setting of two hypotheses, it can also be applied to multiple hypotheses
testing framework, for instance, variable selection [35, 1, 11] or the matching
problem considered here.

On the other hand, feature matching is a well studied problem in computer
vision. In recent years, a great deal of attention was devoted to the acceleration of
greedy matching algorithms, based on approximate and fast methods of finding
nearest neighbors (e.g. [21, 45, 46, 17, 31]). Another direction that helps to
improve feature matching problem is using alternative local descriptors [39, 7, 5]
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Fig 2. The performance of the methods (Greedy, LSS, LSL, LSNS) in the setup described
in Exp. 1. Curves represent the error rates (percentage of repetitions in which the estimated
matching map differs from the true one) as a function of separation distances. The picture
illustrates that LSS, LSL and LSNS require much lower value of κ̄in-in in order to find the
correct mapping.

for given keypoints. Naturally, the question of how to chose keypoints arises,
which is addressed, for instance, in [2, 42]. For more complete overview of the
field we refer to [29] and references therein.

Finally, permutation estimation and related problems have been recently
investigated in different contexts such as statistical seriation [15], noisy sorting
[33], regression with shuffled data [37, 41], isotonic regression and matrices
[32, 36, 30], crowd labeling [40], and recovery of general discrete structure [16].

5 Numerical results

In this section, we report the results of some numerical experiments carried out
on simulated and real data. We applied aforementioned methods LSNS and LSL
and computed different measures of their performance. To get a more complete
picture, we included in this study the Least Sum of Squeres (LSS) estimator and
the greedy estimator. LSS is an unnormalized version of LSNS, given by

π̂LSS
n,m ∈ argmin

π:[n]→[m]

n∑
i=1

∥Xi −X#
π(i)∥

2. (10)

It coincides with LSNS in the case of homoscedastaic noise. The greedy estimator
is obtained by sequentially matching each vector from X to the nearest vector
from X#. Experiments were implemented using python or matlab. For solving
linear sum assignment problems such as (7) or (10), the generalized and improved
versions of the Hungarian algorithm were used [24, 25, 34, 13], implemented
in SciPy library [44]. The goal of the first two experiments is to illustrate our
theoretical findings on synthetic data sets. The third experiment aims to highlight
that the methods studied in this work have some additional attractive features
that would be interesting to investigate in the future.
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Experiment 1: Synthetic data with random features We first randomly
generated π∗, θ# and σ# as follows. We randomly sampled from uniform dis-
tribution on [0, 2] independent variables τij , i ∈ [m], j ∈ [d]. Then, (θ#i )j are
independently sampled from the Gaussian distribution with 0 mean and variance
τij . Additionally, for every θ#i ∈ θ# such that i /∈ Jπ∗ (θ#i is an outlier), we
incremented every coordinate of θ#i by i. Entries of σ# were sampled from the
uniform distribution over [0.5, 2]. Sequences X and X# were generated according
to Section 2 with π∗(i) = i for i ∈ [n]. We applied to this data the following
matching algorithms: Greedy, LSS, LSNS and LSL.

We chose n = 100, m = 130 and d = 50, and generated N = 50 datasets
according to the foregoing process. For each dataset, we computed the 0-1 error
of the considered estimators and the values of (κ̄in-in, κ̄in-out). We plotted in
Figure 2 the error averaged over all datasets with a given value of κ̄in-in. We see
that the error decreases fast with κ̄in-in, corroborating our theoretical results.

Experiment 2: Synthetic data with deterministic features The second
experiment is conducted on data generated by features θ# and variances σ#

inspired by the example constructed in the proof of Theorem 3. More precisely,
for some real numbers a and b representing, respectively, the scale of inlier-inlier
distance κ̄in-in and inlier-outlier distance κ̄in-out, we set θ#k = [ka, 0, . . . , 0]⊤ for
k ∈ [n] and θ#n+k = [na + kb, 0, . . . , 0]⊤. We also used decreasing variances

σ#k = 1/k3/2 for k ∈ [m] and true identity mapping π∗(k) = k for k ∈ [n]. We
chose n = 100, m = 120 and dimension d varying in the set {10, 20, 40}. For
each pair of values (a, b) in a suitably chosen grid, we repeated nrep = 400
times the experiment that consisted in generating data according to (1) and
computing estimators π̂LSS

n,m and π̂LSL
n,m defined respectively by (10) and (7). We

then computed, for each pair (a, b) and for each estimator LSS and LSL, the
percentage of successful detection among nrep repetitions.

The obtained detection regions are depicted in Figure 3 in the form of
heatmaps. This visualisation allows us to grasp the forms of the detection
regions for the specific choice of parameters considered in this example. The first
observation is that LSL is clearly superior to LSS for all the considered values of
the dimension. Second, we clearly see the deterioration of the detection region
when the dimension d becomes larger. Third, the values of κ̄in-out used in the
plots are at least one order of magnitude larger than those of κ̄in-in. This is in line
with the claim of Theorem 5. We also observe in these pictures that successful
detection occurs when κ̄in-out is larger than some threshold even if κ̄in-in is small.
This must be a nice feature of LSL and LSS in this specific example, which
unfortunately does not generalize to other examples as shown by our theoretical
results.

Experiment 3: Real data example This experiment is conducted on the
IMC-PT 2020 dataset from [22] that consists of images of 16 different scenes with
corresponding 3D point-clouds of landmarks, which are used to obtain (pseudo)
ground-truth local keypoint matchings. For a given scene, we sampled 1000
pairs of distinct images of the same landmark with different camera locations,
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Fig 3. Heatmaps of the error rate of the LSL (top row) and the LSS (bottom row) estimators
in Experiment 2. We chose n = 100, m = 120 and d ∈ {10, 20, 40} from left to right. The
parameter a representing the scale of κ̄in-in and corresponding to y-axis varies from 0.02 to
0.08, whereas b representing the scale of κ̄in-out and corresponding to x-axis varies from 0.3
to 10. Dark colour means that probability of successful detection is close to 1 (error rate close
to zero).
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Fig 4. The estimation accuracy measured in the Hamming loss of the estimated matching
in Exp. 3 for different values of the outlier rate, (m− n)/n, varying from 0% to 70%. The
medians of estimation accuracy both for challenging pairs (right plot) and simple pairs (left
plot) of images from Temple Nara scene was computed using OpenCV, LSS and LSL matchers.
The green region represents the interquartile range (lower and upper bounds being 25% and
75% percentiles, respectively).

angles, weather conditions etc. For each image pair we generated 2D keypoints
from original set of 3D points (note that the same 3D point appears in both
of the images, so we have ground truth keypoint matching between 2 images).
Subsequently, we computed SIFT descriptors [28] for every keypoint in images
using Python OpenCV interface [20]. Some pairs of images being more challenging
than others, we split the dataset into two sets of image pairs in order to gain more
understanding on the behaviour of the algorithms. The challenging pairs are
those for which the OpenCV default matching algorithm has accuracy less than
50%. To give a glimpse of what easy and challenging pairs of images look like
we show in Figure 6 image pairs with accuracy of OpenCV matching algorithm
larger than 50% and image pairs with accuracy smaller than 50% from each
scene.

Then, for every image pair, we fixed randomly chosen 100 keypoints in the
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first image (and corresponding keypoints in the second image) and added outliers
to the second image from the remaining keypoints. The outlier rate is chosen to
be between 0% to 70%. Finally, 3 descriptor matching algorithms were applied
(OpenCV default matching algorithm, LSS and LSL). Note that σ and σ# from
(1) are unknown, hence LSNS is not applicable. One can consider using the
estimates σ̂ and σ̂# instead of σ and σ# in (5), but this is beyond the scope of
this paper.

The median estimation accuracy measured in the Hamming loss—for the image
pairs from Temple Nara Japan scene—is plotted in Figure 4. 2 The error bars
with borderlines corresponding to 75% and 25% percentiles are also displayed.
The first observation is that LSS and LSL outperform the OpenCV matcher in
terms of the number of erroneous matches. Second, the rate of correctly matched
descriptors deteriorates with the growth of outlier rate and this deterioration
seems to be linear. This contrasts with our theoretical results in which which
the impact of the rate of outliers is very limited. Note, however, that in the
present experiment the outliers can be very similar to the inliers and, therefore,
the separation condition imposed on κ̄in-out in Theorems 2 and 5 is violated. In
addition, the results established in this work deal with the error of detection of
matching map and do not assess the proportion of correctly matched descriptors.

We also plot the boxplots of the distances between SIFT descriptors of
matching and non-matching keypoints both for easy (not challenging) and
challenging pairs of images. Figure 5 has 3 plots for each of the scenes and 4
boxplots in each of them. The first 2 boxplots correspond to the distance between
SIFT descriptors of matching and non-mathcing keypoints for easy pairs, while
the last 2 boxplots are that of challenging pairs. There are several phenomena that
are observed across all scenes. First, the median distance for matching keypoint
descriptors is much smaller than that of non-matching keypoint descriptors.
Second, the median distance between the matching keypoint descriptors from
challenging pairs is much higher than that of easy pairs. We also observe that
the distance distribution of non-matching keypoint descriptors is roughly the
same for easy and challenging pairs.

The results of this experiment suggest that LSL and LSS are good estimators
in this more general setting as well (descriptors which are not well separated).
However, the number of outliers might have a significant impact on the accuracy
of the distance-based algorithms and this impact needs to be better understood.

6 Discussion and outlook

Intuitions on the separation rate Let us provide some explanations that
should help to gain intuition on the conditions on κ̄in-in and κ̄in-out obtained
in our main theorems. More precisely, we will explain in this paragraph where
the right hand side of (6) comes from. Consider the simpler problem in which
we wish to test the hypothesis H0 : µ = 0 against H1 : µ ̸= 0 based on the

2We observe very similar behaviour in all 3 applied algorithms across other scenes as well,
therefore the corresponding accuracy plots are omitted.
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Fig 5. Boxplots of distances between SIFT descriptors for (left to right) Reichstag, Branden-
burg Gate and Temple Nara scenes. We split datasets into easy and challenging pairs according
to OpenCV matching algorithm score (image pairs with less than 50% correctly matched
descriptors are considered challenging, the others are easy pairs). For each scene we then
draw the boxplots of distances between descriptors of matching keypoints and non-matching
keypoints grouped by easy and challenging pairs, respectively.

observation Y drawn from the Gaussian distribution Nd(µ, σ
2Id). This problem

has a tight link with the considered problem of matching, since one can think of
Y as the difference Xi −X#

j . We are interested in checking whether the pair
(i, j) is such that j = π∗(i), that is whether H0 is true.

Using the standard bounds on the tails of the chi-squared distribution
(Lemma 1), one can check that under H0, the random vector Y lies with
probability ≥ 1− α in the ring R0 = B(0, σ

√
d+ r2) \B(0, σ

√
d− r1) where

r1 = 2
√
d log(1/α) and r2 = 2

√
d log(1/α) + 2 log(1/α).

Similarly, considering the approximation ∥Y ∥22 ≈ ∥µ∥22 + σ2∥ξ∥22 where ξ is
a standard Gaussian vector, we can check that under H1, the random vector
Y lies with probability ≥ 1 − α in the ring R1 = B(0, σ

√
∥µ/σ∥22 + d+ r2) \

B(0, σ
√
∥µ/σ∥22 + d− r1).

If the two rings R0 and R1 are disjoint, it is possible to decide between H0 and
H1 by checking whether Y belongs to R0 or not. This condition of disjointness
is equivalent to

∥µ/σ∥22 + d− r1 > d+ r2.

This leads to

∥µ/σ∥2 >
√
r1 + r2 =

(
4
√
d log(1/α) + 2 log(1/α)

)1/2
≍

(
d log(1/α)

)1/4 ∨ log1/2(1/α).

The right hand side of the last display is of the same order as the right hand side
of the (6), for small values of nm. The fact that for large values of nm there is a
logarithmic deterioration, due to the fact that we have to test a large number of
hypotheses H0,i,j : θπ∗(i) = θ#j , (i, j) ∈ [n]× [m], is quite common in probability
and statistics.

Other noise distributions The results of this paper can be extended to
sub-Gaussian distributions without any change in the rates. The extension to
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Fig 6. Matching map computed by LSL on randomly chosen easy (not challenging) and
challenging pairs of images from each scene. The green lines represent the correct matching,
and red lines are incorrect ones.

sub-exponential distributions seems also possible to do using the methodology
employed in this paper, but will most likely lead to higher-order polylogarithmic
terms.

Finally, considering heavy tailed distributions such as the multivariate Student
distribution might have stronger impact on the rate. Studying this impact is out
of scope of the present work.

Outlier detection The results presented in previous sections provide condi-
tions under which the objective mapping is identified with high probability. This
automatically implies that the outliers are correctly identified. However, the task
of outlier detection is arguably simpler than that of estimation/detection of π∗.
Therefore, one may wonder whether this task can be accomplished under weaker
assumptions than those required in the theorems stated in this paper. Somewhat
surprisingly, it turns out that this is not the case unless we require the outliers
to be very far away from the inliers.

Indeed, on the one hand, if the normalized distance between the outliers
and the inliers is not larger than O(d1/2), it follows from the counter-example
constructed in the proof of Theorem 3 that it is impossible to identify the outliers
using a distance based M -estimator. Moreover, this impossibility holds for every
estimator π̂ of the set of outliers, as shown in Theorem 4.

On the other hand, suitably adapting the arguments of the proof of Theorem 5,
one can prove that if the inlier-outlier distance is larger than a threshold of order√
d exp(cn) for some c > 0, the LSL recovers the true set of outliers.
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Estimation of π∗ instead of detection An interesting yet challenging
problem is that of assessing the minimax risk of estimation of π∗ when the error
is measured, for instance, by means of the Hamming loss ℓHamming(π̂;π

∗) =
#{i ∈ [n] : π̂(i) ̸= π∗(i)}. It is relevant to study this problem in a setting where
consistent detection of π∗ (i.e., Hamming loss equal to zero) is impossible, that
is when the separation conditions are violated but some weaker assumptions
are satisfied. On a related note, one may look for conditions on the normalized
separation distances which ensure the existence of an estimator π̂ such that
P(ℓHamming(π̂;π

∗) ≤ τn) ≥ 1 − α. This means that with probability ≥ 1 − α
the fraction of mismatched vectors of the estimated map π̂ is less than τ , for
τ ∈ (0, 1). Note that these problems are not studied even in the simpler outlier-
free framework.

7 Conclusion

We have investigated the detection regions in the problem of detection of the
matching map between two sequences of noisy vectors. We have shown that the
presence of outliers in one of the two sequences has a strong negative impact
on the detection region. Interestingly, this negative impact is mitigated in the
regime of mild heteroscedasticity, i.e., when noise variances are of the same
order of magnitude. In the extremely favorable case of homoscedastic noise (all
variances are equal), the presence of outliers does not make the problem any
harder, provided that the outliers are at least as different from inliers as two
distinct inliers are different one another. Precise forms of the detection region
in these different cases can be found in Table 1. The results of the numerical
experiments conducted on both synthetic and real data confirm our findings
and, furthermore, show the good behaviour of the LSL estimator in terms of
its robustness to noise and to outliers, not only in the problem of detection but
also in the problem of estimation. In the future, we plan to investigate the case
when both sequences contain outliers and to obtain theoretical guarantees on
the estimation error measured by the Hamming distance.

A Postponed proofs

In this appendix we have collected the proofs of the theorems presented in the
main text of the paper, as well as some technical definitions used in the proofs.
First, denote

σ2
i,j = σ2

i + σ#2j and κi,j =
∥θi − θ#j ∥
σi,j

(11)

for any pair of indices (i, j) with i ∈ [n] and j ∈ [m]. We will also use the
notation

κ̄ = min(κ̄in-in, κ̄in-out). (12)
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Second, we define the random variables ζ1 and ζ2 as follows

ζ1 = max
i ̸=j

∣∣(θi − θ#j )
⊤(σiξi − σ#j ξ

#
j )
∣∣

∥θi − θ#j ∥σi,j
, ζ2 = d−1/2 max

i,j

∣∣∣∣
∥∥σiξi − σ#j ξ

#
j

∥∥2
σ2
i,j

− d

∣∣∣∣.
It can be easily noticed that ζ1 = maxi ̸=j |ζi,j |, where ζi,j are standard Gaussian
random variables. As for ζ2, it can be seen that ζ2 = d−1/2 maxi,j |ηi,j |, where
ηi,j are centered χ

2 random variables with d degrees of freedom, i.e. ηi,j
D
= χ2

d−d.
In addition, one can infer from (1) that for every i ∈ [n] and every j ∈ [m],

we have

∥Xi −X#
j ∥2 ≤ ∥θi − θ#j ∥2 + σ2

i,j(d+
√
d ζ2) + 2ζ1∥θi − θ#j ∥σi,j

= σ2
i,j

(
κ2i,j + d+

√
d ζ2 + 2ζ1κi,j

)
, (13)

∥Xi −X#
j ∥2 ≥ ∥θi − θ#j ∥2 + σ2

i,j(d−
√
d ζ2)− 2ζ1∥θi − θ#j ∥σi,j

= σ2
i,j

(
κ2i,j + d−

√
d ζ2 − 2ζ1κi,j

)
. (14)

The concentration of the centered and normalized χ2 random variable, such
as ζ2, is described in the following lemma.

Lemma 1 (Laurent and Massart [26], Eq. (4.3) and (4.4)). If Y is drawn from
the chi-squared distribution χ2(D), where D ∈ N∗, then, for every x > 0, P

(
Y −D ≤ −2

√
Dx

)
≤ e−x,

P
(
Y −D ≥ 2

√
Dx+ 2x

)
≤ e−x.

As a consequence, for every y > 0, P
(
D−1/2|Y−D| ≥ y

)
≤ 2 exp

{
− 1

8y(y∧
√
D)

}
.

Or, equivalently, for any α ∈ (0, 1), we have

P

(
D−1/2|Y −D| ≤ 2

√
log(2/α) +

2 log(2/α)√
D

)
≥ 1− α.

A.1 Proof of Theorem 1

We prove the upper bound for κ̄ in the presence of outliers. Without loss of
generality we can assume that π∗(i) = i, ∀i ∈ [n]. We wish to bound the
probability of the event Ω = {π̂ ̸= π∗}, where π̂ = π̄LSNS. It is evident that

Ω ⊂
⋃

π ̸=π∗

Ωπ, (15)

where the union is taken over all possible injective mappings π : [n] → [m] and

Ωπ =

{ n∑
i=1

∥Xi −X#
i ∥2

2σ2
i

≥
n∑

i=1

∥Xi −X#
π(i)∥

2

σ2
i + (σ#π(i))

2

}
.
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One easily checks that the following inclusion holds:

Ωπ ⊂
n⋃

i=1

⋃
j∈[m]\{i}

{
∥Xi −X#

i ∥2

2σ2
i

≥
∥Xi −X#

j ∥2

σ2
i + (σ#j )

2

}
. (16)

Since π∗(i) = i for every i ∈ [n], κi,i = 0 (see the definition in (11)) and, in view
of (13),

∥Xi −X#
i ∥2 ≤ 2σ2

i (d+
√
d ζ2). (17)

Similarly, for every j ∈ [m] and j ̸= i, in view of (14),

∥Xi −X#
j ∥2 ≥ σ2

i,j(κ
2
i,j + d−

√
d ζ2 − 2κi,jζ1).

Recall that κ̄ defined in (12), is the smallest normalized distance κi,j . Therefore,
on the event Ω1 = {κ̄ ≥ ζ1}, the previous display implies that

∥Xi −X#
j ∥2

σ2
i,j

≥ κ̄2 − 2κ̄ζ1 + d−
√
d ζ2. (18)

Hence, combining obtained bounds (17) and (18) we get that{
∥Xi −X#

i ∥2

2σ2
i

≥
∥Xi −X#

j ∥2

σ2
i + (σ#j )

2

}
∩ Ω1 ⊂

{
d+

√
d ζ2 ≥ κ̄2 − 2κ̄ζ1 + d−

√
d ζ2

}
=

{
2
√
d ζ2 + 2κ̄ ζ1 ≥ κ̄2

}
. (19)

Note that the event on the right hand side of the last display is independent of
the pair (i, j). This implies that

Ω ∩ Ω1

by (15)
⊂

( ⋃
π ̸=π∗

Ωπ

)
∩ Ω1

by (16)
⊂

( n⋃
i=1

⋃
j∈[m]\{i}

{
∥Xi −X#

i ∥2

2σ2
i

≥
∥Xi −X#

j ∥2

σ2
i + (σ#j )

2

})
∩ Ω1

⊂
n⋃

i=1

⋃
j∈[m]\{i}

({
∥Xi −X#

i ∥2

2σ2
i

≥
∥Xi −X#

j ∥2

σ2
i + (σ#j )

2

}
∩ Ω1

)
by (19)
⊂

{
2
√
d ζ2 + 2κ̄ ζ1 ≥ κ̄2

}
. (20)

Using (20) we can show that

P(Ω) ≤ P(Ω∁
1) +P

(
Ω ∩ Ω1

)
≤ P

(
ζ1 ≥ κ̄

)
+P(2

√
dζ2 + 2κ̄ζ1 ≥ κ̄2)

≤ P
(
ζ1 ≥ κ̄

)
+P

(
ζ1 ≥ 1

4 κ̄
)
+P

(
2
√
dζ2 + 2κ̄ζ1 ≥ κ̄2; ζ1 <

1
4 κ̄

)
≤ 2P

(
ζ1 ≥ 1

4 κ̄
)
+P

(
ζ2 ≥ κ̄2

4
√
d

)
. (21)



T. Galstyan, A. Minasyan, A. Dalayan/Feature matching with outliers 20

For suitably chosen standard Gaussian random variables ζi,j it holds that
ζ1 = maxi ̸=j |ζi,j |. Therefore, using the tail bound for the standard Gaussian
distribution and the union bound, we get

P
(
ζ1 ≥ 1

4 κ̄
)
≤

∑
i ̸=j

P
(
|ζi,j | ≥ 1

4 κ̄
)
≤ 2nme−κ̄2/32.

To complete the proof, it remains to upper bound the second term in the right
hand side of (21), i.e., to evaluate the tail of the random variable ζ2. To this

end, we use the concentration result stated in Lemma 1 with y = κ̄2

4
√
d
, combined

with the union bound and simple algebra. This yields

P
(
ζ2 ≥ κ̄2

4
√
d

)
≤ 2nm exp

{
− 1

8
· κ̄2

4
√
d

( κ̄2

4
√
d
∧
√
d
)}

= 2nm exp
{
− (κ̄/16)2

d
(2κ̄2 ∧ 8d)

}
, (22)

where the nm factor in front of the exponent comes from the union bound for all
nm pairs (i, j) from the definition of ζ2, while the exponent is a direct application
of Lemma 1. Finally, using inequalities (21)-(22), we get that whenever

κ̄ ≥ 4
(√

2 log(8nm/α) ∨
(
d log(4nm/α)

)1/4)
, (23)

the probability of incorrect matching is at most α. Thus, we have formally showed
that if (23) holds then P(π̂ ̸= π∗) = P(Ω) ≤ α, as desired.

A.2 Proof of Theorem 2

We prove the upper bound for κ̄ = min(κ̄in-in, κ̄in-out) in the presence of outliers
and in the case of unknown noise variance. We wish to bound the probability
of the event Ω = {π̂ ≠ π∗}, where π̂ = π̂LSL and π∗(i) = i for all i ∈ [n]. It is
evident that

Ω ∈
⋃

π ̸=π∗

Ωπ, (24)

where

Ωπ =
{ n∑

i=1

log ∥Xi −X#
i ∥2 ≥

n∑
i=1

log ∥Xi −X#
π(i)∥

2
}

⊂
n⋃

i=1

⋃
j∈[m]\{i}

{
log ∥Xi −X#

i ∥2 ≥ log ∥Xi −X#
j ∥2

}
(25)

Recall that κ̄ = min(κ̄in-in, κ̄in-out). On the event Ω1 = {κ̄ ≥ ζ1}, from equation
(14), we get

∥Xi −X#
j ∥2

σ2
i,j

≥ κ̄2 − 2ζ1κ̄+ d−
√
d ζ2. (26)
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Note that the expression on the right hand side of the last display is independent
of the pair (i, j). This implies that

Ω ∩ Ω1⊂
( ⋃

π ̸=π∗

Ωπ

)
∩ Ω1 [by (24)]

⊂
( n⋃

i=1

⋃
j∈[m]\{i}

{
log ∥Xi −X#

i ∥2 ≥ log ∥Xi −X#
j ∥2

})
∩ Ω1 [by (25)]

⊂
n⋃

i=1

⋃
j∈[m]\{i}

({
∥Xi −X#

i ∥2 ≥ ∥Xi −X#
j ∥2

}
∩ Ω1

)
⊂
{
2σ2

i (d+
√
dζ2) ≥ σ2

i,j(κ̄
2 − 2ζ1κ̄+ d−

√
d ζ2)

}
[by (13),(26)]

⊂
{
2(d+

√
dζ2) ≥ κ̄2 − 2ζ1κ̄+ d−

√
d ζ2

}
, [since σi ≤ σi,j ]

⊂
{
3
√
d ζ2 + 2ζ1κ̄ ≥ κ̄2 − d

}
. (27)

We can bound the probability of incorrect matching P(Ω) using the relationship
obtained in (27)

P(Ω) ≤ P(Ω∁
1) +P(Ω ∩ Ω1)

≤ P(ζ1 ≥ κ̄) +P
(
3
√
d ζ2 + 2ζ1κ̄ ≥ κ̄2 − d

)
.

From the last inequality, we infer that

P(Ω) ≤ P(ζ1 ≥ κ̄) +P
(
ζ1 ≥ 1

4 κ̄
)
+P

(
3
√
d ζ2 + 2ζ1κ̄ ≥ κ̄2 − d ; ζ1 <

1
4 κ̄

)
≤ 2P

(
ζ1 ≥ 1

4 κ̄
)
+P

(
3
√
d ζ2 ≥ 1

2 κ̄
2 − d

)
≤ 2P

(
ζ1 ≥ 1

4 κ̄
)
+P

(
ζ2 ≥ κ̄2 − 2d

6
√
d

)
. (28)

As mentioned in the beginning of the section, for suitably chosen standard
Gaussian random variables ζi,j it holds that ζ1 = maxi ̸=j |ζi,j |. Therefore, using
the tail bound for the standard Gaussian distribution and the union bound, we
get

P
(
ζ1 ≥ 1

4 κ̄
)
≤

∑
i ̸=j

P
(
|ζi,j | ≥ 1

4 κ̄
)
≤ 2nme−κ̄2/32 ≤ α/4. (29)

To complete the proof, it remains to upper bound the second term in the right
hand side of (28), i.e., to evaluate the tail of the random variable ζ2. Using
Lemma 1 with y = (κ̄2 − 2d)/(6

√
d)—which is positive under the conditions of

the theorem—combined with the union bound, we arrive at

P(ζ2 ≥ y) ≤ 2nm exp
{
− 1

8
y(y ∧

√
d)
}

= 2nm

(
exp

{
− 1

8
y2
}
∨ exp

{
− 1

8
y
√
d
})

.
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One easily checks that the last expression is smaller than α/2 if and only if

y2 ≥ 8 log(4nm/α) and y
√
d ≥ 8 log(4nm/α)

which is equivalent to

y ≥
(
2
√
2 log(4nm/α)

)
∨
(
(8/

√
d) log(4nm/α)

)
.

Replacing y = (κ̄2 − 2d)/(6
√
d), the last inequality becomes

κ̄2 ≥ 2d+
(
12
√
2d log(4nm/α)

)
∨
(
48 log(4nm/α)

)
.

Combining the inequality from the last display with the bound derived from (29)
we get that all these bounds are satisfied whenever

κ̄ ≥
√
2d+ 4

{(
2d log

4nm

α

)1/4

∨
(
3 log

8nm

α

)1/2}
.

Therefore, under this condition on κ̄, the probability of the incorrect matching
is at most α, i.e. P(π̂ ̸= π∗) = P(Ω) ≤ α.

A.3 Proof of Theorem 3

First we fix m = n + 1 and π∗(i) = i for all i ∈ [n], where π∗ is the correct
matching. Let σ#1 = 1 and σ#i+1 = αi for all i ∈ [n], where α≪ 1. Then let’s take
π(i) = i+ 1 for all i ∈ [n]. Let L(π) be the vector of distances ∥Xi −X#

π(i)∥ for

a matching scheme π

L(π) =


∥X1 −X#

π(1)∥
∥X2 −X#

π(2)∥
· · ·

∥Xn −X#
π(n)∥

 .
The next lemma shows that the event L(π̄) < L(π∗) (coordinate-wise) occurs
with probability at least 1/4.

Lemma 2. Let n ≥ 4, d ≥ 422 log(4n) and θ#1 = (1; 0; . . . ; 0)⊤. Assume that
π∗(i) = i, σ#i = 2−(i−1) and θ#i+1 = θ#i + 2−(i+1)

√
d θ#1 for all i ∈ [n + 1].

Then L(π∗) > L(π̄) with probability greater than 1/4, where π̄ is the injection
defined by π̄(i) = i + 1. Furthermore, for these values (θ#,σ#, π∗), we have
κin-in = κin-out =

√
d/20.

Proof of Lemma 2 Let us denote

κ̄i ≜
∥θ#π(i) − θi∥√
σ2
i + σ#2π̄(i)

=
√
d/20, for all i ∈ [n].
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Recall that σ2
i,j = σ2

i + σ#2j and write

Li(π) = ∥Xi −X#
π(i)∥

2 = ∥θi − θ#π(i) + ζiσi,π(i)∥2,

where ζi ∼ N (0, Id). Notice that Li(π
∗) = 2σ2

i ∥ζi∥2 for all i ∈ [n]. Similarly, the
expression from the last display for π̄ reads as

Li(π̄) = ∥ζiσi,π̄(i)∥2
(
1 +

κ̄2i
∥ζi∥2

)
+ 2σi,π̄(i)ζ

⊤
i (θi − θ#π̄(i)).

Plugging in the values of σ# with α = 1/2 and π̄(i) = i+ 1 we arrive at

Li(π
∗) = 23−2i∥ζi∥2, Li(π̄) =

5

22i
∥ζ̄i∥2

(
1 +

κ̄2i
∥ζ̄i∥2

)
+

√
5

2i−1
ζ̄⊤i (θi − θ#i+1),

where in the second expression we write ζ̄i instead of ζi to indicate that these
random variables are different, though both are standard normal d-dimensional
vectors. We first replace the second term of Li(π̄) with its upper bound that
holds with probability of at least 1/4. It is evident that the random variable
Z ≜ 2σi,π̄(i)ζ

⊤
i (θi − θ#π̄(i)) is Gaussian with standard deviation σ ≜ 2σi,π̄(i)∥θi −

θ#π̄(i)∥ = 2σ2
i,π̄(i)κ̄i, therefore

P(Z ≥ σ
√

2 log 4) ≤ 1

4
.

Hence, on the event Ω = {Z ≤ 2σ2
i,π̄(i)κ̄i

√
2 log 4} the inequality Li(π

∗) > Li(π̄)
holds whenever

8

22i
∥ζi∥2 >

5

22i
∥ζ̄i∥2

(
1 +

κ̄2i
∥ζ̄i∥2

)
+

5

22i
κ̄i
√
8 log 4,

8

5
∥ζi∥2 − ∥ζ̄i∥2 > κ̄2i + 2κ̄i

√
2 log 4. (30)

Notice that the left hand side of (30) is a weighted difference of two centered and
normalized χ2 random variables with d degrees of freedom. The concentration
inequality for such difference is a direct consequence of Lemma 1. Namely, for
X,Y ∼ χ2

d the concentration bound for Z = αX − βY with arbitrary α, β ∈ R
reads as

P(Z ≥ (α− β)d− 2
√
dx(α+ β)− 2βx) ≥ 1− 2e−x.

It is easy to verify that given n ≥ 4, d ≥ 422 log(4n) and κ̄i ≤
√
d/20, then

κ̄2i + 2κ̄i
√
2 log 4 ≤ 3

5
d− 26

5

√
d log(4n)− 2 log(4n),

where the right hand side is the quantile of Z with x = log(4n). Combining the
inequality from the last display with (30) we get that on the event Ω we have

P(Li(π
∗) > Li(π̄)) ≥ 1− 1

2n
.
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Recall that P(Ω) ≥ 3/4, then using the union bound for events Ω and {Li(π
∗) >

Li(π̄)} all i ∈ [n] we arrive at P(L(π∗) > L(π̄)) > 1/4. This completes the proof
of Lemma 2.

Therefore, using the result of Lemma 2 and applying any non-decreasing
function ρ(·) to each of the coordinates of L(π̄) and L(π∗) yields

n∑
i=1

ρi(∥Xi −X#
π̄(i)∥) <

n∑
i=1

ρi(∥Xi −X#
π∗(i)∥)

with probability of at least 1/4. This, in turn, implies that an optimizer will not
choose π∗ on this event. Hence, P(π̄ ̸= π∗) > 1/4, concluding the proof of the
theorem.

A.4 Proof of Theorem 4

We denote the set of all injective functions π : [n] → [m] as In,m. We use
the notation D(P,Q) for the Kullback-Leibler (KL) divergence between two
probability measures P and Q such that P is absolutely continuous with respect
to Q, P ≪ Q. The identity mapping denoted by id is defined as follows:
id(i) = i, ∀i ∈ [n]. It is also assumed that π∗ = id.

To establish the general lower bound we use the following lemma:

Lemma 3 (Tsybakov [43], Theorem 2.5). Assume that for some integer M ≥ 2
there exist distinct injective functions π0, . . . , πM ∈ In,m and mutually absolutely
continuous probability measures Q0, . . . ,QM defined on a common probability
space (Z,Z ) such that

1

M

M∑
j=1

D(Qj ,Q0) ≤
1

8
logM.

Then, for every measurable mapping π̃ : Z → In,m,

max
j=0,...,M

Qj(π̃ ̸= πj) ≥
√
M√

M + 1

(3
4
− 1

2
√

log(M)

)
.

Since d ≥ 16 log(nm) then the rate from Theorem 1 becomes of order
(d log(nm))1/4. We show that for 6κ ≥ (d log(nm))1/4 there is indeed a set-
ting where the detection of π∗ fails with probability at least 1/4 for any matching
map π̃ ∈ In,m. To show this we use Lemma 3 with properly chosen family of
probability measures described in the following lemma.

Lemma 4 (Collier and Dalalyan [10], Lemma 14). Let ε1, . . . , εm be real numbers
defined by

εk =
√

2/d κσ#k, ∀k ∈ [m],
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and let µ be the uniform distribution on E = {±ε1}d × · · · × {±εm}d. Denote by
Pµ,π the probability measure on Rd×m defined by Pµ,π(A) =

∫
E Pθ,π(A)µ(dθ).

Let Θ̄κ be the set of θ# such that 6κ ≥ (d log(nm))1/4. Assume that σ#1 ≤
· · · ≤ σ#m and σ#2m /σ#21 ≤ 1 +

√
log(nm)

16d . Let π = (k k′) be the transposition that

only permutes kth and k′th observations (k < k′). Then, the Kullback-Leibler
divergence between Pµ,π and Pµ,id can be bounded as follows

D(Pµ,π,Pµ,id) ≤
1

8
log(m(m− 1)/2).

Additionally, µ(E \ Θ̄κ) ≤ (m(m− 1)/2)e−d/8.

Applying Lemma 3 with M = m(m− 1)/2, Q0 = Pµ,id and {Qj}j=1,...,M =
{Pµ,πk,k′}k ̸=k′ we obtain that for any estimator π̂

max
π∗∈In,m

sup
θ#∈Θ̄κ

Pθ#,σ#,π∗(π̂ ̸= π∗) ≥ max
π∗∈{id}∪{πk,k′}

∫
Θ̄κ

Pθ#,π∗
(
π̂ ̸= π∗)µ(dθ#)

µ(Θ̄κ)

≥ max
π∗∈{id}∪{πk,k′}

Pµ,π∗
(
π̂ ̸= π∗)− µ(E \ Θ̄κ)

≥
√
15√

15 + 1

(3
4
− 1

2
√
log 15

)
− m(m− 1)

2
e−d/8,

where in the last inequality we applied the result of Lemma 3 in conjunction

with the monotonicity of function m 7→
√
m

1+
√
m
(3/4 − (2

√
log(m))−1). Recall

that m > n ≥ 5 and d ≥ 16 log(nm) yielding inf π̂ Pθ#,σ#,π∗(π̂ ̸= π∗) > 0.338,
concluding the proof.

A.5 Proof of Theorem 5

To ease notation, we write π̂ instead of π̂LSL
n,m, and, without loss of generality, we

assume that π∗(i) = i for i ∈ [n]. We wish to prove that on an event of probability
≥ 1−α, for every injective mapping π : [n] → [m], we have ψ(π∗) ≤ ψ(π), where

ψ(π) =

n∑
i=1

log ∥Xi −X#
π(i)∥

2.

Since the logarithm is an increasing function, this is equivalent to showing that

n∏
i=1

∥Xi −X#
π∗(i)∥

2 <

n∏
i=1

∥Xi −X#
π(i)∥

2, for every π ̸= π∗,

which, in turn, is the same as

n∏
i=1

∥Xi −X#
π∗(i)∥

2

∥Xi −X#
π(i)∥2

< 1, for every π ̸= π∗.
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In view of (13) and (14), we have

n∏
i=1

∥Xi −X#
π∗(i)∥

2

∥Xi −X#
π(i)∥2

≤
∏
i∈[n]

π(i)̸=π∗(i)

2σ2
i (d+

√
d ζ2)

σ2
i,π(i)

(
κ2i,π(i) + d−

√
d ζ2 − 2ζ1κi,π(i)

)
+

≤
∏
i∈[n]

π(i)̸=π∗(i)

4σ2
i (d+

√
d ζ2)

σ2
i,π(i)

(
κ2i,π(i) + 2d− 2

√
d ζ2

)
+

, if ζ1 ≤ (1/4)κ̄.

(31)

Let us define the sets I1 =
{
i ∈ [n] : π(i) ∈ Im(π∗) \ {π∗(i)}

}
and I2 = {i ∈ [n] :

π(i) ̸∈ Im(π∗)}. Clearly, using the inequality σ2
i,j ≥ 2σiσ

#
j , we get∏

i∈[n]
π(i)̸=π∗(i)

2σ2
i

σ2
i,π(i)

≤
∏
i∈[n]

π(i) ̸=π∗(i)

σ2
i

σiσ
#
π(i)

=

∏
i∈I1∪I2

σi∏
i∈I1

σ#π(i)
∏

i∈I2
σ#π(i)

. (32)

For every i ∈ I1, there is j ∈ [n] such that π(i) = π∗(j); this j is given by
j = (π∗)−1(i). For such a pair (i, j), in view of (2), we have σ#π(i) = σ#π∗(j) = σj .

Note that by construction of I1, (π
∗)−1(I1) ⊂ I1 ∪ I2. This implies that∏

i∈I1

σ#π(i) =
∏

j∈(π∗)−1(I1)

σj =

∏
j∈I1∪I2

σj∏
j∈(I1∪I2)\(π∗)−1(I1)

σj
. (33)

Note also that the cardinality of the set J1 = (π∗)−1(I1) is equal to the cardinality
of I1, which implies that |(I1 ∪ I2) \ J1| = |I2|. Combining (32), (33), and the
last equality of cardinalities, we get∏

i∈[n]
π(i)̸=π∗(i)

2σ2
i

σ2
i,π(i)

≤
∏

j∈(I1∪I2)\J1
σj∏

i∈I2
σ#π(i)

≤ r|I2|σ . (34)

Using the same notation I1 and I2, we can check that

κi,π(i) ≥

{
κ̄in-in, i ∈ I1,

κ̄in-out, i ∈ I2.

Injecting this inequality into (31), and using (34), we get

n∏
i=1

∥Xi −X#
π∗(i)∥

2

∥Xi −X#
π(i)∥2

≤ rI2σ {2(d+
√
d ζ2)}|I1|+|I2|

(κ̄2in-in + 2d− 2
√
d ζ2)

I1
+ (κ̄2in-out + 2d− 2

√
d ζ2)

I2
+

.

Recall that this inequality is true on the event ζ1 ≤ κ̄/4. It follows from last
display that as soon as

ζ1 ≤ κ̄/4

4
√
d ζ2 < κ̄2in-in

2d(rσ − 1) + 4rσ
√
d ζ2 ≤ κ̄2in-out

(35)
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we have

n∏
i=1

∥Xi −X#
π∗(i)∥

2

∥Xi −X#
π(i)∥2

< 1

for every π. It remains to show that, under the conditions of Theorem 5, the event
in (35) has a probability at least 1− α. This will be done by using tail bounds
for Gaussian and χ-squared distributions, combined with the union bound.

On the one hand, using the well-known tail bound for the standard Gaussian
distribution and the union bound, we get

P

(
ζ1 ≥

√
2 log

(4nm
α

))
≤

∑
i ̸=j

P

(
|ζi,j | ≥

√
2 log

(4nm
α

))
≤ α/2.

On the other hand, Lemma 1 and the union bound entail

P

(
ζ2 ≥ 2

√
log(4nm/α) +

2 log(4nm/α)√
d

)
≤ α/2.

Therefore, if
κ̄ ≥ 4

√
2 log(4nm/α)

κ̄2in-in ≥ 8
√
d log(4nm/α) + 8log(4nm/α)

κ̄2in-out ≥ 2d(rσ − 1) + 8rσ
√
d log(4nm/α) + 8rσlog(4nm/α)

then, on an event of probability ≥ 1− α, all the inequalities in (35) hold true.
This completes the proof of the theorem.
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