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The goal of this paper is to show that a single robust estimator of the
mean of a multivariate Gaussian distribution can enjoy five desirable proper-
ties. First, it is computationally tractable in the sense that it can be computed
in a time, which is at most polynomial in dimension, sample size and the
logarithm of the inverse of the contamination rate. Second, it is equivariant
by translations, uniform scaling and orthogonal transformations. Third, it has
a high breakdown point equal to 0.5, and a nearly minimax rate breakdown
point approximately equal to 0.28. Fourth, it is minimax rate optimal, up to a
logarithmic factor, when data consists of independent observations corrupted
by adversarially chosen outliers. Fifth, it is asymptotically efficient when the
rate of contamination tends to zero. The estimator is obtained by an iterative
reweighting approach. Each sample point is assigned a weight that is itera-
tively updated by solving a convex optimization problem. We also establish
a dimension-free nonasymptotic risk bound for the expected error of the pro-
posed estimator. It is the first result of this kind in the literature and involves
only the effective rank of the covariance matrix. Finally, we show that the
obtained results can be extended to sub-Gaussian distributions, as well as to
the cases of unknown rate of contamination or unknown covariance matrix.

1. Introduction. Robust estimation is one of the most fundamental problems in statis-
tics. Its goal is to design efficient methods capable of processing data sets contaminated by
outliers, so that these outliers have little influence on the final result. The notion of an out-
lier is hard to define for a single data point. It is also hard, inefficient and often impossible
to clean data by removing the outliers. Instead, one can build methods that take as input
the contaminated data set and provide as output an estimate, which is not very sensitive to
the contamination. Recent advances in data acquisition and computational power provoked
a revival of interest in robust estimation and learning, with a focus on finite sample results
and computationally tractable procedures. This was in contrast to the more traditional studies
analyzing asymptotic properties of such statistical methods.

This paper builds on recent advances made in robust estimation and suggests a method that
has attractive properties both from asymptotic and finite-sample points of view. Furthermore,
it is computationally tractable and its statistical complexity depends optimally on the dimen-
sion. As a matter of fact, we even show that what really matters is the intrinsic dimension,
defined in the Gaussian model as the effective rank of the covariance matrix.

Note that in the framework of robust estimation, the high-dimensional setting is qualita-
tively different from the one-dimensional setting. This qualitative difference can be shown
at two levels. First, from a computational point of view, the running time of several robust
methods scales poorly with dimension. Second, from a statistical point of view, while a sim-
ple “remove then average” strategy might be successful in low-dimensional settings, it can
easily be seen to fail in the high-dimensional case. Indeed, assume that for some ε ∈ (0,1/2),
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p ∈ N, and n ∈ N, the data X1, . . . ,Xn consist of n(1 − ε) points (inliers) drawn from a p-
dimensional Gaussian distribution Np(0, Ip) (where Ip is the p × p identity matrix) and εn

points (outliers) equal to a given vector u. Consider an idealized setting in which, for a given
threshold r > 0, an oracle tells the user whether or not Xi is within a distance r of the true
mean 0. A simple strategy for robust mean estimation consists of removing all the points of
Euclidean norm larger than 2

√
p and averaging all the remaining points. If the norm of u is

equal to
√

p, one can check that the distance between this estimator and the true mean μ = 0
is of order

√
p/n + ε‖u‖2 = √

p/n + ε
√

p. This error rate is provably optimal in the small
dimensional setting p = O(1), but suboptimal as compared to the optimal rate

√
p/n + ε

when the dimension p is not constant. The reason of this suboptimality is that the individu-
ally harmless outliers, lying close to the bulk of the point cloud, have a strong joint impact
on the quality of estimation.

We postpone a review of the relevant prior work to Section 4 in order to ease comparison
with our results, and proceed here with a summary of our contributions. In the context of a
data set subject to a fully adversarial corruption, we introduce a new estimator of the Gaussian
mean that enjoys the following properties (the precise meaning of these properties is given in
Section 2):

• it is computable in polynomial time,
• it is equivariant with respect to similarity transformations (translations, uniform scaling

and orthogonal transformations),
• it has a high (minimax) breakdown point: ε∗ = (5 − √

5)/10 ≈ 0.28,
• it is minimax rate optimal, up to a logarithmic factor,
• it is asymptotically efficient when the rate of contamination tends to zero,
• for inhomogeneous covariance matrices, it achieves a better sample complexity than all the

other previously studied methods.

In order to keep the presentation simple, all the aforementioned results are established in
the case where the inliers are drawn from the Gaussian distribution. We then show that the
extension to a sub-Gaussian distribution can be carried out along the same lines. Furthermore,
we prove that using Lepski’s method, one can get rid of the knowledge of the contamination
rate. More precisely, we establish that the rate

√
p/n + ε

√
log(1/ε) can be achieved without

any information on ε other than ε < (5 − √
5)/10 ≈ 0.28. Finally, we prove that the same

order of magnitude of the estimation error is achieved when the covariance matrix � is un-
known but isotropic (i.e., proportional to the identity matrix). When the covariance matrix
is an arbitrary unknown matrix with bounded operator norm, our estimator has an error of
order

√
p/n +√

ε, which is the best known rate of estimation by a computationally tractable
procedure in the case of unknown covariance matrices.

The rest of this paper is organized as follows. We complete this Introduction by presenting
the notation used throughout the paper. Section 2 describes the problem setting and provides
the definitions of the properties of robust estimators such as rate optimality or breakdown
point. The iteratively reweighted mean estimator is introduced in Section 3. This section
also contains the main facts characterizing the iteratively reweighted mean estimator along
with their high-level proofs. A detailed discussion of relation to prior work is included in
Section 4. Section 5 is devoted to a formal statement of the main building blocks of the proofs.
Extensions to the cases of sub-Gaussian distributions, unknown ε and � are examined in
Section 6. Some empirical results illustrating our theoretical claims are reported in Section 7.
Postponed proofs are gathered in Section 8 and in the supplementary material.

For any vector v, we use the norm notation ‖v‖2 for the standard Euclidean norm, ‖v‖1
for the sum of absolute values of entries and ‖v‖∞ for the largest in absolute value entry
of v. The tensor product of v by itself is denoted by v⊗2 = vv	. We denote by �n−1 and
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by S
n−1, respectively, the probability simplex and the unit sphere in R

n. For any symmetric
matrix M, λmax(M) is the largest eigenvalue of M, while λmax,+(M) is its positive part. The
operator norm of M is denoted by ‖M‖op. We will often use the effective rank rM defined as
Tr(M)/‖M‖op, where Tr(M) is the trace of matrix M. For symmetric matrices A and B of
the same size, we write A 
 B if the matrix A − B is positive semidefinite. For a rectangular
p × n matrix A, we let smin(A) and smax(A) be the smallest and the largest singular values
of A defined respectively as smin(A) = infv∈Sn−1 ‖Av‖2 and smax(A) = supv∈Sn−1 ‖Av‖2. The
set of all p × p positive semidefinite matrices is denoted by Sp

+.

2. Desirable properties of a robust estimator. We consider the setting in which the
sample points are corrupted versions of independent and identically distributed random vec-
tors drawn from a p-variate Gaussian distribution with mean μ∗ and covariance matrix �.
In what follows, we will assume that the rate of contamination and the covariance matrix
are known and, therefore, can be used for constructing an estimator of μ∗. We present in
Section 6 some additional results, which are valid under relaxations of this assumption.

DEFINITION 1. We say that the distribution Pn of data X1, . . . ,Xn is Gaussian with
adversarial contamination, denoted by Pn ∈ GAC(μ∗,�, ε) with ε ∈ (0,1/2) and � 
 0, if
there is a set of n independent and identically distributed random vectors Y 1, . . . ,Y n drawn
from Np(μ∗,�) satisfying ∣∣{i : Xi �= Y i}

∣∣ ≤ εn.

In what follows, the sample points Xi with indices in the set O = {i : Xi �= Y i} are called
outliers, while all the other sample points are called inliers. We define I = {1, . . . , n} \O, the
set of inliers. Assumption GAC allows both the set of outliers O and the outliers themselves
to be random and to depend arbitrarily on the values of Y 1, . . . ,Y n. In particular, we can
consider a game in which an adversary has access to the clean observations Y 1, . . . ,Y n and
is allowed to modify an ε fraction of them before unveiling to the statistician. The statistician
aims at estimating μ∗ as accurately as possible, the accuracy being measured by the expected
estimation error:

RPn

(
μ̂n,μ

∗) = ∥∥μ̂n − μ∗∥∥
L2(Pn) =

( p∑
j=1

EPn

[(
μ̂n − μ∗)2

j

])1/2

.

Thus, the goal of the adversary is to apply a contamination that makes the task of estimation
the hardest possible. The goal of the statistician is to find an estimator μ̂n that minimizes the
worst-case risk

Rmax(μ̂n,�, ε) = sup
μ∗∈Rp

sup
Pn∈GAC(μ∗,�,ε)

RPn

(
μ̂n,μ

∗).
Let r� = Tr(�)/‖�‖op be the effective rank of �. The theory developed by Chen, Gao and
Ren (2016, 2018), in conjunction with Bateni and Dalalyan (2020), Prop. 1, implies that

inf
μ̂n

Rmax(μ̂n,�, ε) ≥ c‖�‖1/2
op

(√
r�

n
+ ε

)
(1)

for some constant c > 0, where the infimum is over all measurable functions of (X1, . . . ,Xn).
A detailed proof of this claim is presented in Appendix E of the supplementary material
(Dalalyan and Minasyan (2022)). This lower bound naturally leads to the following definition.
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DEFINITION 2. We say that the estimator μ̂n is minimax rate optimal (in expectation),
if there are universal constants c1, c2 and C such that

Rmax(μ̂n,�, ε) ≤ C‖�‖1/2
op

(√
r�

n
+ ε

)
for every (n,�, ε) satisfying r� ≤ c1n and ε ≤ c2.

The iteratively reweighted mean estimator, introduced in the next section, is not minimax
rate optimal but is very close to being so. Indeed, we will prove that it is minimax rate optimal
up to a

√
log(1/ε) factor in the second term (ε is replaced by ε

√
log(1/ε)). It should be

stressed here that, to the best of our knowledge, none of the results on robust estimation of
the Gaussian mean provides rate optimality in expectation in the high-dimensional setting.
Indeed, all those results provide risk bounds that hold with high probability, and either (a)
do not say anything about the magnitude of the error on a set of small but strictly positive
probability or (b) use the confidence parameter in the construction of the estimator. Both of
these shortcomings prevent from extracting bounds for expected loss from high-probability
bounds. This being said, it should be noted that most prior work has focused on the Huber
contamination, in which case no meaningful (i.e., different from +∞, see Section 2.6 in
Bateni and Dalalyan (2020)) upper bound on the minimax risk in expectation can be obtained.

DEFINITION 3. We say that μ̂n is an asymptotically efficient estimator of μ∗, if when
ε = εn tends to zero sufficiently fast, as n tends to infinity, we have

Rmax(μ̂n,�, ε) ≤ ‖�‖1/2
op

√
r�

n

(
1 + on(1)

)
.

If we compare inequalities in Definition 2 and Definition 3, we can see that the constant C

present in the former disappeared in the latter. This reflects the fact that asymptotic efficiency
implies not only rate optimality, but also the optimality of the constant factor. We recall here
that in the outlier-free situation, the sample mean is asymptotically efficient and its worst-case
risk is equal to ‖�‖1/2

op
√

r�/n.
One can infer from (1) that a necessary condition for the existence of asymptotically ef-

ficient estimator is ε2
n = on(r�/n). We show in the next section that this condition is almost

sufficient, by proving that the iteratively reweighted mean estimator is asymptotically effi-
cient provided that ε2

n log(1/εn) = on(r�/n).
The last notion that we introduce in this section is the breakdown point, the term being

coined by Hampel (1968), see also Donoho and Huber (1983). Roughly speaking, the break-
down point of a given estimator is the largest proportion of outliers that the estimator can
support without becoming infinitely large. The definition we provide below slightly differs
from the original one. This difference is motivated by our goal to focus on studying the ex-
pected risk of robust estimators.

DEFINITION 4. We say that ε∗
n ∈ [0,1/2] is the (finite-sample) breakdown point of the

estimator μ̂n, if

Rmax(μ̂n,�, ε) < +∞, ∀ε < ε∗
n

and Rmax(μ̂n,�, ε) = +∞, for every ε > ε∗
n.

One can check that the breakdown points of the componentwise median and the geometric
median (see the definition of μ̂GM

n in (4) below) equal 1/2. Unfortunately, the minimax rate of
these methods is strongly suboptimal; see Chen, Gao and Ren (2018), Proposition 2.1 and Lai,
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Rao and Vempala (2016), Proposition 2.1. Among all rate optimal (up to a polylogarithmic
factor) robust estimators, Tukey’s median is1 the one with highest known breakdown point
equal to 1/3 (Donoho and Gasko (1992)). It should be noted that this paper deals with the
original definition of the breakdown point which, as already mentioned, is slightly different
from that of Definition 4.

The notion of breakdown point given in Definition 4, well adapted to estimators that do not
rely on the knowledge of ε, becomes less relevant in the context of known ε. Indeed, if a given
estimator μ̂n(ε) is proved to have a breakdown point equal to 0.1, one can consider instead
the estimator μ̃n(ε) = μ̂n(ε)1(ε < 0.1)+μ̂GM

n 1(ε ≥ 0.1), which will have a breakdown point
equal to 0.5. For this reason, it appears more appealing to consider a different notion that we
call rate-breakdown point, and which is of the same flavor as the δ-breakdown point defined
in Chen, Gao and Ren (2016).

DEFINITION 5. We say that ε∗
r ∈ [0,1/2] is the r(n,�, ε)-breakdown point of the esti-

mator μ̂n for a given function r : N× Sp
+ × [0,1/2), if for every ε < ε∗

r ,

sup
n,p

Rmax(μ̂n(ε),�, ε)

r(n,�, ε)
< +∞,

and ε∗
r is the largest value satisfying this property.

In the context of Gaussian mean estimation, if the previous definition is applied with
r(n,�, ε) = ‖�‖op(

√
r�/n + ε), we call the corresponding value the minimax rate break-

down point. Similarly, if r(n,�, ε) = ‖�‖op(
√

r�/n+ ε
√

log(1/ε)), we call the correspond-
ing value the nearly minimax rate breakdown point. It should be mentioned here that the
extra

√
log(1/ε) factor cannot be avoided by any Statistical Query (SQ) polynomial-time al-

gorithm, as shown by the SQ lower bound established in Diakonikolas, Kane and Stewart
(2017).

3. Iterative reweighting approach. In this section, we define the iterative reweighting
estimator that will be later proved to enjoy all the desirable properties. To this end, we set

X̄w =
n∑

i=1

wiXi , G(w,μ) = λmax,+
(

n∑
i=1

wi(Xi − μ)⊗2 − �

)
(2)

for any pair of vectors w ∈ [0,1]n and μ ∈ R
p . The main idea of the proposed methods is to

find a weight vector ŵn belonging to the probability simplex

�n−1 = {
w ∈ [0,1]n : w1 + · · · + wn = 1

}
that mimics the ideal weight vector w∗ defined by w∗

j = 1(j ∈ I)/|I|, so that the weighted

average X̄ŵn is nearly as close to μ∗ as the average of the inliers. Note that, for any weight
vector w ∈ �n−1 and any vector μ ∈ R

p , we have
n∑

i=1

wi(Xi − μ)⊗2 =
n∑

i=1

wi(Xi − X̄w)⊗2 + (X̄w − μ)⊗2 

n∑

i=1

wi(Xi − X̄w)⊗2.

This readily yields G(w,μ) ≥ G(w, X̄w) and, therefore

G(w, X̄w) = min
μ∈Rn

G(w,μ), ∀w ∈ �n−1.(3)

1Recent results in Zhu, Jiao and Steinhardt (2020) suggest that an estimator based on the TV-projection may
achieve the optimal breakdown point of 1/2.
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FIG. 1. The behavior of the number of iterations K = Kε , given by (6), as a function of the contamination rate
ε for different values of the dimension p = r� .

The precise definition of the proposed estimator is as follows. We start from an initial
estimator μ̂0 of μ∗. To give a concrete example, and also in order to guarantee equivariance
by similarity transformations, we assume that μ̂0 is the geometric median:

μ̂0 = μ̂GM
n ∈ arg min

μ∈Rp

n∑
i=1

‖Xi − μ‖2.(4)

DEFINITION 6. We call iteratively reweighted mean estimator, denoted by μ̂IR
n , the K-

th element of the sequence {μ̂k;k = 0,1, . . .} starting from μ̂0 in (4) and defined by the
recursion

ŵk ∈ arg min
(n−nε)‖w‖∞≤1

G
(
w, μ̂k−1), μ̂k = X̄ŵk ,(5)

where the minimum is over all weight vectors w ∈ �n−1 satisfying maxj wj ≤ 1/(n − nε)

and the number of iterations is

K = 0 ∨
⌈

log(4r�) − 2 log(ε(1 − 2ε))

2 log(1 − 2ε) − log ε − log(1 − ε)

⌉
.(6)

The idea of computing a weighted mean, with weights measuring the outlyingness of the
observations goes back at least to Donoho (1982), Stahel (1981). Perhaps the first idea similar
to that of minimizing the largest eigenvalue of the covariance matrix was that of minimizing
the determinant of the sample covariance matrix over all subsamples of a given cardinality
(Rousseeuw (1984, 1985)). It was also observed in Lopuhaä and Rousseeuw (1991) that one
can improve the estimator by iteratively updating the weights. An overview of these results
can be found in Rousseeuw and Hubert (2013).

Note that the value of K provided above is tailored to the case where the initial estimator
is the geometric median. Clearly, K depends only logarithmically on the dimension and K =
Kε tends to 2 when ε goes to zero; see Figure 1. Note also that the choice of K in (6) is
derived from the condition (

√
ε(1 − ε)/(1 − 2ε))K‖μ̂0 − μ∗‖L2 ≤ ε; see (10) below. We can

use any other initial estimator of μ∗ instead of the geometric median, provided that K is large
enough to satisfy the last inequality.

We have to emphasize that μ̂IR
n relies on the knowledge of both ε and � (the dependence

on � is through the effective rank, which coincides with the dimension for nondegenerate
covariance matrices). Indeed, the number of iterations K depends on both ε and �. Addition-
ally, � is used in the cost function G(w,μ) and ε is used for specifying the set of feasible
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weights in optimization problem (5). We present some extensions to the case of unknown ε

and � in Section 6.
The rest of this section is devoted to showing that the iteratively reweighted estimator

enjoys all the desirable properties announced in the Introduction. An estimator is called com-
putationally tractable, if its computational complexity is at most polynomial in n, p and 1/ε.

FACT 1. The estimator μ̂IR
n is computationally tractable.

In order to check computational tractability, it suffices to prove that each iteration of the
algorithm can be performed in polynomial time. Since the number of iterations depends log-
arithmically on r� ≤ p, this will suffice. Note now that the optimization problem in (5) is
convex and can be cast into a semidefinite program. Indeed, it is equivalent to minimizing a
real value t over all the pairs (t,w) satisfying the constraints

t ≥ 0,w ∈ �n−1,‖w‖∞ ≤ 1

n(1 − ε)
,

n∑
i=1

wi

(
Xi − μ̂k−1)⊗2 � � + tIp.

The first two constraints can be rewritten as a set of linear inequalities, while the third con-
straint is a linear matrix inequality. Given the special form of the cost function and the con-
straints, it is possible to design specific optimization routines which will find an approximate
solution to the problem in a faster way than the out-of-shelf SDP-solvers. However, we will
not pursue this line of research in this work.

FACT 2. The estimator μ̂IR
n is translation, uniform scaling and orthogonal transformation

equivariant.

The equivariance mentioned in this statement should be understood as follows. If we de-
note by μ̂IR

n,X the estimator computed for data X1, . . . ,Xn, and by μ̂IR
n,X′ the one computed

for data X′
1, . . . ,X

′
n, with X′

i = a +λUXi , where a ∈ R
p , λ > 0 and U is a p ×p orthogonal

matrix, then μ̂IR
n,X′ = a + λUμ̂IR

n,X . To prove this property, we first note that

min
μ∈Rp

n∑
i=1

∥∥X′
i − μ

∥∥
2 = λ min

μ∈Rp

n∑
i=1

∥∥Xi − λ−1U	(μ − a)
∥∥

2.

This implies that μ̂GM
n,X = λ−1U	(μ̂GM

n,X′ − a), which is equivalent to μ̂GM
n,X′ = a + λUμ̂GM

n,X .

Therefore, the initial value of the recursion is equivariant. If we add to this the fact that2

GX(w,μ) = λ2GX′(w,a + λUμ) for every (w,μ), we get the equivariance of μ̂IR
n .

FACT 3. The breakdown point ε∗
n and the nearly minimax rate breakdown point ε∗

r of
μ̂IR

n satisfy, respectively, ε∗
n = 0.5 and ε∗

r ≥ (5 − √
5)/10 ≈ 0.28.

We prove later in this paper (see (14)) that if X1, . . . ,Xn satisfy GAC(μ∗,�, ε), there is
a random variable � depending only on ζ i = Y i − μ∗, i = 1, . . . , n, such that

∥∥X̄w − μ∗∥∥
2 ≤

√
ε(1 − ε)

1 − 2ε
G(w,μ)1/2 + �, ∀μ ∈ R

p,(7)

for every w ∈ �n−1 such that n(1 − ε)‖w‖∞ ≤ 1. Inequality (7) is one of the main building
blocks of the proof of Facts 3 to 5. This inequality, as well as inequalities (11) and (12)

2We use here the notation GX(w,μ) to make clear the dependence of G in (2) on Xi s. We also stress that when

the estimator is computed for the transformed data X′
i , the matrix � is naturally replaced by λ2U�U	.
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below will be formally stated and proved in subsequent sections. To check Fact 3, we set
αε = √

ε(1 − ε)/(1 − 2ε) and note that3∥∥μ̂k − μ∗∥∥
2

= ∥∥X̄ŵk − μ∗∥∥
2 ≤ αεG

(
ŵk, μ̂k−1)1/2 + �

≤ αεG
(
w∗, μ̂k−1)1/2 + �

≤ αε

(
G
(
w∗, X̄w∗

) + ∥∥X̄w∗ − μ̂k−1∥∥2
2

)1/2 + �

≤ αε

(
G
(
w∗,μ∗) + ∥∥X̄w∗ − μ̂k−1∥∥2

2

)1/2 + �

≤ αε

∥∥μ̂k−1 − μ∗∥∥
2 + �̃,

(8)

where �̃ = αε(G(w∗,μ∗)1/2 + ‖ζ̄ w∗‖2) + �. Unfolding this recursion, we get 4

∥∥μ̂IR
n − μ∗∥∥

2 = ∥∥μ̂K − μ∗∥∥
2 ≤ αK

ε

∥∥μ̂0 − μ∗∥∥
2 + �̃

1 − αε

.(9)

The geometric median μ̂0 = μ̂GM
n having a breakdown point equal to 1/2, we infer from

the last display that the error of the iteratively reweighted estimator remains bounded af-
ter altering ε-fraction of data points provided that αε < 1. This implies that the breakdown
point is at least equal to the solution of the equation

√
ε(1 − ε) = 1 − 2ε, which yields

ε∗ ≥ (5 − √
5)/10. Moreover, if ε ∈ [(5 − √

5)/10,1/2], then the number of iterations K

equals zero and the iteratively reweighted mean coincides with the geometric median. There-
fore, its breakdown point is 1/2.

FACT 4. The estimator μ̂IR
n is nearly minimax rate optimal, in the sense that its worst-

case risk is bounded by C‖�‖1/2
op (

√
r�/n + ε

√
log(1/ε)), where C is a universal constant.

Without loss of generality, we assume that ‖�‖op = 1 so that r� = Tr(�). We can always

reduce the initial problem to this case by considering scaled data points Xi/‖�‖1/2
op instead

of Xi . Combining (9) and the triangle inequality, we get

∥∥μ̂IR
n − μ∗∥∥

L2
≤ αK

ε

∥∥μ̂GM
n − μ∗∥∥

L2
+ ‖�̃‖L2

1 − αε

.(10)

It is not hard to check that ‖μ̂GM
n − μ∗‖L2 ≤ 2

√
r�/(1 − 2ε); see Lemma 2 below. Further-

more, the choice of K in (6) entails 2αK
ε

√
r� ≤ ε(1 − 2ε). This implies that

∥∥μ̂IR
n − μ∗∥∥

L2
≤ ε + ‖�̃‖L2

1 − αε

.

The last two building blocks of the proof are the following5 inequalities:

E
[
G
(
w∗,μ∗)] ≤ C(1 + √

r�/n)
√

r�/n,(11)

‖�‖L2 ≤ √
r�/n(1 + C

√
ε) + C

√
ε(r�/n)1/4 + Cε

√
log(1/ε),(12)

3See Section 8.1 for more detailed explanations.
4Here, and in the sequel αK

ε stands for K th power of αε .
5Inequality (11) is Koltchinskii and Lounici (2017), Theorem 4, while (12) is the claim of Proposition 2 below.
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where C > 0 is a universal constant. In what follows, the value of C may change from one
line to the other. We have

‖�̃‖L2 ≤ αε

(∥∥G(
w∗,μ∗)1/2∥∥

L2
+ ‖ζ̄ w∗‖L2

) + ‖�‖L2

≤ C
√

ε
(
E1/2[G(

w∗,μ∗)] + √
r�/n

) + ‖�‖2
L2

≤ Cε
(
(r�/n)1/4 + √

r�/n
) + ‖�‖L2

≤ √
r�/n(1 + C

√
ε) + C

√
ε(r�/n)1/4 + Cε

√
log(1/ε)

≤ C
√

r�/n + Cε
√

log(1/ε).

(13)

Returning to (9) and combining it with (13), we get the claim of Fact 4 for every ε ≤ ε0,
where ε0 is any positive number strictly smaller than (5 − √

5)/10. This also proves the
second claim of Fact 3.

FACT 5. In the setting ε = εn → 0 so that ε2 log(1/ε) = on(r�/n) when n → ∞, the
estimator μ̂IR

n is asymptotically efficient.

The proof of this fact follows from (9) and (12). Indeed, if ε2 log(1/ε) = on(r�/n), (12)
implies that

‖�̃‖2
L2

≤ r�

n

(
1 + on(1)

)
.

Injecting this bound in (9) and using the fact that ε tends to zero, we get the claim of Fact 5.

4. Relation to prior work and discussion. Robust estimation of a mean is a statistical
problem studied by many authors since at least 60 years. It is impossible to give an overview
of all existing results and we will not try to do it here. The interested reader may refer to
the books (Maronna, Martin and Yohai (2006)) and (Huber and Ronchetti (2009)). We will
rather focus here on some recent results that are the most closely related to the present work.
Let us just recall that Huber and Ronchetti (2009) enumerates three desirable properties of
a statistical procedure: efficiency, stability and breakdown. We showed here that iteratively
reweighted mean estimator possesses these features and, in addition, is equivariant and com-
putationally tractable.

To the best of our knowledge, the form
√

p/n + ε of the minimax risk in the Gaussian
mean estimation problem has been first obtained by Chen, Gao and Ren (2018). They proved
that this rate holds with high probability for the Tukey median, which is known to be compu-
tationally intractable in the high-dimensional setting. The first nearly-rate-optimal and com-
putationally tractable estimators have been proposed by Lai, Rao and Vempala (2016) and
Diakonikolas et al. (2016).6 The methods analyzed in these papers are different, but they
share the same idea: If for a subsample of points the empirical covariance matrix is suffi-
ciently close to the theoretical one, then the arithmetic mean of this subsample is a good
estimator of the theoretical mean. Our method is based on this idea as well, which is mathe-
matically formalized in (7); see also Proposition 1 below.

Further improvements in running times—up to obtaining a linear in np computational
complexity in the case of a constant ε—are presented in Cheng, Diakonikolas and Ge (2019).
Some lower bounds suggesting that the log-factor in the term ε

√
log(1/ε) cannot be removed

from the rate of computationally tractable estimators are established in Diakonikolas, Kane

6See Diakonikolas et al. (2019a) for the extended version
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Algorithm 1 Iteratively reweighted mean estimator (known ε and �)
Input: data X1, . . . ,Xn ∈R

p , contamination rate ε and �

Output: parameter estimate μ̂IR
n

Initialize: compute μ̂0 as a minimizer of
∑n

i=1 ‖Xi − μ‖2

Set K = 0 ∨
⌈

log(4r�)−2 log(ε(1−2ε))
2 log(1−2ε)−log ε−log(1−ε)

⌉
.

For k = 1 : K
Compute current weights:

w ∈ arg min
(n−nε)‖w‖∞≤1

λmax

( n∑
i=1

wi

(
Xi − μ̂k−1)⊗2 − �

)
∨ 0.

Update the estimator: μ̂k = ∑n
i=1 wiXi .

EndFor
Return μ̂K .

and Stewart (2017). In a slightly weaker model of corruption, Diakonikolas et al. (2018) pro-
pose an iterative filtering algorithm that achieves the optimal rate ε without the extra factor√

log(1/ε). On a related note, Collier and Dalalyan (2019) shows that in a weaker contam-
ination model termed as parametric contamination, the carefully trimmed sample mean can
achieve a better rate than that of the coordinatewise/geometric median.

An overview of the recent advances on robust estimation with a focus on computational
aspects can be found in Diakonikolas and Kane (2019). Extensions of these methods to
the sparse mean estimation are developed in Balakrishnan et al. (2017), Diakonikolas et al.
(2019b). All of these results are proved to hold on an event with a prescribed probability; see
Bateni and Dalalyan (2020) for a relation between results in expectation and those with high
probability, as well as for the definitions of various types of contamination.

The proposed estimator shares some features with the adaptive weights smoothing (Polzehl
and Spokoiny (2000)). Adaptive weights smoothing (AWS) iteratively updates the weights
assigned to observations, similarly to Algorithm 1. The main difference is that the weights
in AWS are not measuring the outlyingness but the relevance for interpolating a function
at a given point. There are also many other statistical problems in which robust estimation
has been recently revisited from the point of view of minimax rates. This includes scale
and covariance matrix estimation (Chen, Gao and Ren (2018), Comminges et al. (2021)),
matrix completion (Klopp, Lounici and Tsybakov (2017)), multivariate regression (Chinot
(2020), Dalalyan and Thompson (2019), Gao (2020)), classification (Cannings, Fan and
Samworth (2020), Li and Bradic (2018)), subspace clustering (Soltanolkotabi and Candés
(2012)), community detection (Cai and Li (2015)), etc. Properties of robust M-estimators
in high-dimensional settings are studied in (Elsener and van de Geer (2018), Loh (2017)).
There is also an increasing body of literature on the robustness to heavy-tailed distributions
(Lugosi and Mendelson (2019, 2020), Devroye et al. (2016), Lecué and Lerasle (2019, 2020),
Minsker (2018)) and the computationally tractable methods in this context (Cherapanamjeri,
Flammarion and Bartlett (2019), Depersin and Lecué (2019), Dong, Hopkins and Li (2019),
Hopkins (2018)).

A potentially useful observation, from a computational standpoint, is that it is sufficient
to solve the optimization problem in equation 5 up to an error proportional to

√
r�/n + √

ε.
Indeed, one can easily repeat all the steps in (8) to check that this optimization error does not
alter the order of magnitude of the statistical error.

5. Formal statement of main building blocks. The first building block, inequality (7),
used in Section 3 to analyze the risk of μ̂IR

n , upper bounds the error of estimating the mean



ROBUST ESTIMATION OF A GAUSSIAN MEAN 1203

by the error of estimating the covariance matrix. In order to formally state the result, we need
some additional notation.

Let w ∈ �n−1 be a vector of weights and let I be a subset of {1, . . . , n}. We use the
notation wI for the vector obtained from w by zeroing all the entries having indices outside I .
Considering w as a probability on {1, . . . , n}, we define w|I as the corresponding conditional
probability on I that is

w|I ∈ �n−1, (w|I )i = (
wi/‖wI‖1

)
1(i ∈ I ).

We will make repeated use of the notation

X̄w =
n∑

i=1

wiXi , ξ̄w|I = ∑
i∈I

(w|I )iξ i , ζ̄ w|I = ∑
i∈I

(w|I )iζ i .

PROPOSITION 1. Let ζ 1, . . . , ζ n be a set of vectors such that ζ i = Xi − μ∗ for every i ∈
I , where I is a subset of {1, . . . , n}. For every weight vector w ∈ �n−1 such that

∑
i /∈I wi ≤

εw ≤ 1/2 and for every p × p matrix �, it holds∥∥X̄w − μ∗∥∥
2 ≤

√
εw

1 − εw

λ
1/2
max,+

(
n∑

i=1

wi(Xi − X̄w)⊗2 − �

)
+ R(ζ ,w,I),

with the remainder term

R(ζ ,w,I) = 2
√

‖�‖opεw + √
2εwλ

1/2
max,+

(∑
i∈I

(w|I)i
(
� − ζ iζ

	
i

)) + (1 + √
2εw)‖ζ̄ w|I‖2.

The proof of this result is postponed to the last section. In simple words, the claim of
proposition is that the estimation error of the weighted mean X̄w is, up to a remainder term,
governed by the quantity G(w, X̄w)1/2. It turns out that the remainder term is bounded by a
small quantity uniformly in w and I , provided that these two satisfy suitable conditions. For
I , it is enough to constrain the cardinality of its complement Ic = O. For w, it appears to be
sufficient to assume that its sup-norm is small. In that respect, the following lemma plays a
key role in the proof.

LEMMA 1. For any integer � > 0, let Wn,� be the set of all w ∈ �n−1 such that
maxi wi ≤ 1/�. The following facts hold:

(i) For every J ⊂ {1, . . . , n} such that |J | ≥ �, the uniform weight vector uJ ∈ Wn,�.
(ii) The set Wn,� is the convex hull of the uniform weight vectors {uJ : |J | = �}.

(iii) For every convex mapping G : �n−1 →R, we have

sup
w∈Wn,�

G(w) = max|J |=�
G
(
uJ ),

where the last maximum is over all subsets J of cardinality � of the set {1, . . . , n}.
(iv) If w ∈ Wn,� then for any I such that |I | ≥ �′ > n − �, we have w|I ∈ Wn,�+�′−n.

Let us denote by Wn(ε) the set Wn,n(1−ε). This is exactly the feasible set in the optimiza-
tion problem defining the iterations of Algorithm 1. It is clear that for w ∈ Wn(ε) and for
|I c| ≤ nε, we have

∑
i /∈I wi ≤ ε/(1 − ε). We now infer from Proposition 1 and (3) that

∥∥X̄w − μ∗∥∥
2 ≤ αελ

1/2
max,+

(
n∑

i=1

wi(Xi − X̄w)⊗2 − �

)
+ �

= αε inf
μ∈Rp

G(w,μ)1/2 + �,

(14)
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with � being the largest value of R(ζ ,w, I ) over all possible weights w ∈Wn(ε) and subsets
I ⊂ {1, . . . , n} satisfying |I c| ≤ nε. The second building block, formally stated in the next
proposition, provides a suitable upper bound for the random variable �.

PROPOSITION 2. Let R(ζ ,w, I ) be defined in Proposition 1 and ζ 1, . . . , ζ n be i.i.d.
centered Gaussian random vectors with covariance matrix � satisfying λmax(�) = 1. If ε ≤
0.28, then the random variable

� = sup
w∈Wn(ε)

max|I |≥n(1−ε)
R(ζ ,w, I )

satisfies, for a universal constant C > 0, the inequalities

‖�‖L2 ≤ √
r�/n(1 + C

√
ε) + C

√
ε(r�/n)1/4 + Cε

√
log(1/ε),(15)

‖�‖L2 ≤ √
p/n(1 + 16

√
ε) + 5

√
3ε(p/n)1/4 + 32ε

√
log(2/ε),(16)

where for the second inequality we assumed that p ≥ 2 and n ≥ p ∨ 4.

The second inequality is weaker than the first one, since obviously r� ≤ p. However, the
advantage of the second inequality is that it comes with explicit constants and shows that
these constants are not excessively large.

To close this section, we state a theorem that rephrases Fact 4 in a way that might be more
convenient for future references. Its proof is omitted, since it follows the lines of the proof of
Fact 4 presented above.

THEOREM 1. Let μ̂IR
n be the iteratively reweighted mean defined in Definition 6 and

Algorithm 1. There is a universal constant C > 0 such that for any n,p ≥ 1 and for every
ε < (5 − √

5)/10, we have

sup
μ∗∈Rp

sup
Pn∈GAC(μ∗,�,ε)

E1/2[∥∥μ̂IR
n − μ∗∥∥2

2

] ≤ C‖�‖1/2
op

1 − 2ε − √
ε(1 − ε)

(√
r�/n + ε

√
log(1/ε)

)
,

where Pn ∈ GAC(μ∗,�, ε) means that the data points Xi are Gaussian with adversarial
contamination; see Definition 1. If, in addition, p ≥ 2 and n ≥ p ∨ 10, then

sup
μ∗∈Rp

sup
Pn∈GAC(μ∗,�,ε)

E1/2[∥∥μ̂IR
n − μ∗∥∥2

2

] ≤ 10‖�‖1/2
op

1 − 2ε − √
ε(1 − ε)

(√
p/n + ε

√
log(1/ε)

)
.

To the best of our knowledge, this is the first result in the literature that provides an upper
bound on the expected error of an outlier-robust estimator, which is of nearly optimal rate.

6. Sub-Gaussian distributions, high-probability bounds and adaptation. Risk
bounds stated in Fact 4 and Fact 5 and formalized in Theorem 1 hold for the expected error
under the condition that the reference distribution is Gaussian. Furthermore, the proposed
procedure relies on the knowledge of both the contamination rate ε and the covariance matrix
�. The goal of this section is to show how some of these restrictions can be alleviated.

6.1. High-probability risk bound for a sub-Gaussian reference distribution. As expected,
the risk bounds established in previous sections can be extended to the case of sub-Gaussian
distributions. Furthermore, risk bounds holding with high probability can be proved using
the same techniques as those employed for proving the in-expectation bounds. In order to be
more precise, we state in this subsection the high-probability counterpart of the second claim
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of Theorem 1. The price to pay for covering the more general sub-Gaussian case is that the
constant in the right-hand side of the inequality is no longer explicit.

Recall that a zero-mean random vector ξ is called sub-Gaussian with parameter τ > 0 (also
known as the variance proxy), if

E
[
ev	ξ ] ≤ e

τ/2‖v‖2
2, ∀v ∈ R

p.

We write ξ ∼ SGp(τ ). If ξ is standard Gaussian then it is sub-Gaussian with parameter 1.
Similarly, if ξ is centered and belongs almost surely to the unit ball, then ξ is sub-Gaussian
with parameter 1. Let us describe now the set of data-generating distributions that we consider
in this section.

DEFINITION 7. We say that the joint distribution Pn of the random vectors X1, . . . ,Xn ∈
R

p belongs to the sub-Gaussian model with adversarial contamination with mean μ∗, covari-
ance matrix � and contamination rate ε, if there are independent random vectors ξ i ∼ SGp(τ )

such that ∣∣{i := 1, . . . , n : Xi �= μ∗ + �1/2ξ i

}∣∣ ≤ εn.

We then write Pn ∈ SGAC(μ∗,�, ε).

It is clear that a Gaussian model with adversarial contamination defined in Definition 1 is
a particular case of the sub-Gaussian model with adversarial contamination. In other terms,
the set SGAC(μ∗,�, ε) is strictly larger than the set GAC(μ∗,�, ε). Nevertheless, as the
result shows below, the risk bounds established for the iteratively reweighted mean algorithms
remain valid uniformly over this extended class SGAC(μ∗,�, ε).

THEOREM 2. Let μ̂IR
n be the iteratively reweighted mean defined in Definition 6 and in

Algorithm 1. Let δ ∈ (4e−n,1) be a tolerance level. There exists a constant A5 depending
only on the variance proxy τ such that if n ≥ p ≥ 2 and ε < (5 − √

5)/10, then for every
μ∗ ∈R

p and every Pn ∈ SGAC(μ∗,�, ε), we have

P
(∥∥μ̂IR

n − μ∗∥∥
2 ≤ A5‖�‖1/2

op

1 − 2ε − √
ε(1 − ε)

(√
p + log(4/δ)

n
+ ε

√
log(1/ε)

))
≤ 1 − 4δ.

The proof of this theorem is postponed to the supplementary material. Let us just mention
that Cheng, Diakonikolas and Ge (2019), Section 1.2, claim that the rate

√
p/n+ε

√
log(1/ε)

is optimal for sub-Gaussian distributions, meaning that, unlike the Gaussian case, the√
log(1/ε) factor cannot be removed. A formal proof of this fact can be found in the last

remark of Section 2 in Lugosi and Mendelson (2021).

6.2. Adaptation to unknown contamination rate ε. An appealing feature of the risk
bounds that hold with high probability is that they allow us to apply Lepski’s method (Lepski
and Spokoiny (1997), Lepskii (1992)) for obtaining an adaptive estimator with respect to ε.
The obtained adaptive estimator enjoys all the five properties enumerated in Section 3 except
the asymptotic efficiency, since the adaptation results in an inflation of the risk bound by a
factor 3. The precise description of the algorithm, already used in the framework of robust
estimation by Collier and Dalalyan (2019), is presented below. We will denote by B(μ, r) the
ball with center μ and radius r in the Euclidean space R

p .

DEFINITION 8. We choose a geometric grid ε� = a�ε0, � = 1,2, . . . , �max, of possi-
ble values of the contamination rate. Here, a ∈ (0,1) is a real number, ε0 = (5 − √

5)/10
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and �max = [0.5 loga(p/n)]. For each � = 1, . . . , �max, we denote by μ̂IR
n (ε�) the iteratively

reweighted mean computed for ε = ε� (see Algorithm 1), and we set

Rδ(z) = A5‖�‖1/2
op

1 − 2z − √
z(1 − z)

(√
p + log(4�max/δ)

n
+ z

√
log(1/z)

)
, z ∈ [0, ε0),

where δ ∈ (0,1) is a tolerance level and A5 is the constant from Theorem 2. The adaptively
chosen iteratively reweighted mean estimator μ̂AIR

n is defined by μ̂AIR
n = μ̂IR

n (ε�̂) where

�̂ = max

{
� ≤ �max :

�⋂
j=1

B
(
μ̂IR

n (εj );Rδ(εj )
) �= ∅

}
.

The estimator μ̂AIR
n can be computed without the knowledge of the true contamination rate

ε. Furthermore, its computational complexity nearly of the same order as the complexity of
computing a single instance of the iteratively reweighted mean as defined by Algorithm 1.
Indeed, to compute μ̂AIR

n , one needs to apply Algorithm 1 at most �max = [0.5 loga(p/n)]
times, and to solve a second-order cone program for checking whether the intersection of
a small number of balls is empty. The next theorem, proved in the supplementary material,
shows that the estimation error of this estimator μ̂AIR

n is of the optimal rate, up to a logarithmic
factor. To the best of our knowledge, this is the first result of this kind in the literature.

THEOREM 3. Let μ̂AIR
n be the estimator defined in Definition 8. Let δ ∈ (4e−n,1) be a

tolerance level. Let n ≥ p ≥ 2 and ε ≤ (5 −√
5)a/10, where a ∈ (0,1) is the parameter used

in Definition 8. Then, for every μ∗ ∈ R
p and every Pn ∈ SGAC(μ∗,�, ε), we have

P
(∥∥μ̂AIR

n − μ∗∥∥
2 ≤ 3A5‖�‖1/2

op

a − 2ε − √
ε(a − ε)

(√
p + log(4�max/δ)

n
+ ε

√
log(1/ε)

))
≤ 1 − 4δ.

The breakdown point of the adaptive estimator μ̂AIR
n inferred from the last theorem is

slightly smaller than the one of μ̂IR
n . Indeed, there is a factor a < 1 between these two quan-

tities. Note that one can choose a to be very close to one. The only drawback of choosing a

too close to one is the higher computational complexity of the resulting estimator.

6.3. Extension to unknown covariance �. The iteratively reweighted mean estimator de-
fined in Algorithm 1 requires the knowledge of the covariance matrix �. Let us discuss what
happens when this matrix is unknown, by considering two qualitatively different situations.

The first situation is when the covariance matrix is isotropic, � = σ 2Ip , with unknown
σ > 0. One can easily check that all the claims of Sections 3 and 5 hold true for a slight
modification of μ̂IR

n obtained by minimizing λmax(
∑

i wi(Xi − μ̂k−1)⊗2 − �) instead of
G(w, μ̂k−1) in (5). The advantage of considering G(w, μ̂k−1) was computational. Indeed,
if for the weights w at some iteration k in Algorithm 1 the aforementioned largest eigenvalue
λmax is nonpositive, then one can stop the iterations and output the corresponding weighted
mean.

On the other hand, replacing λmax,+ by λmax, we obtain that for isotropic matrices �,

arg min
w

λmax

(∑
i

wi

(
Xi − μ̂k−1)⊗2 − σ 2Ip

)
= arg min

w
λmax

(∑
i

wi

(
Xi − μ̂k−1)⊗2

)
.

This means that the computation of the weight w does not require the knowledge of � and
the modified estimator defined in Algorithm 2 satisfies inequalities of Theorems 1 and 2.

The second situation is when � is unknown and arbitrary. In this case, to the best of
our knowledge, there is no known computationally tractable estimator of μ∗ achieving a
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Algorithm 2 Iteratively reweighted mean estimator (known ε, unknown �)
Input: data X1, . . . ,Xn ∈R

p , contamination rate ε

Output: parameter estimate μ̂IR
n

Initialize: compute μ̂0 as a minimizer of
∑n

i=1 ‖Xi − μ‖2

Set K = 0 ∨
⌈

log(4p)−2 log(ε(1−2ε))
2 log(1−2ε)−log ε−log(1−ε)

⌉
.

For k = 1 : K
Compute current weights:

w ∈ arg min
(n−nε)‖w‖∞≤1

λmax

( n∑
i=1

wi

(
Xi − μ̂k−1)⊗2

)
.

Update the estimator: μ̂k = ∑n
i=1 wiXi .

EndFor
Return μ̂K .

rate faster than
√

p/n + √
ε. It turns out that a slightly modified version of the iteratively

reweighted mean estimator defined in Algorithm 2 achieves this rate as well. The formal
statement of the result entailing this claim is presented below.

THEOREM 4. Let μ̂IR
n be the iteratively reweighted mean defined in Algorithm 2. Let

δ ∈ (4e−n,1) be a tolerance level. There exists a constant A5 depending only on the variance
proxy τ such that if n ≥ p ≥ 2 and ε < (5 − √

5)/10, then for every μ∗ ∈ R
p and every

Pn ∈ SGAC(μ∗,�, ε), we have

P
(∥∥μ̂IR

n − μ∗∥∥
2 ≤ A5‖�‖1/2

op

1 − 2ε − √
ε(1 − ε)

(√
p + log(4/δ)

n
+ 3

√
ε

))
≤ 1 − 4δ.

Robust estimators of the unknown mean in the case of unknown covariance matrix have
been proposed in several papers; see, for instance, Cheng, Diakonikolas and Ge (2019),
Diakonikolas et al. (2016), Lai, Rao and Vempala (2016). The dependence of the risk bound
on ε, obtained in these papers, is of order

√
ε, up to possible logarithmic factors.

The proof of Theorem 4 is deferred to the supplementary material. Akin the case of known
�, the proof hinges on (7), which shows that the error of estimating the mean is dominated
by the error of estimating �. However, since we merely need an upper bound of order

√
ε,

it suffices to show that the term G(w,μ) remains bounded. Showing this boundedness turns
out to be easier than proving that the same term is small in the case of known �.

Note that Theorem 4 can be used to construct an adaptive (with respect to ε) estimator
of μ∗ in the case of unknown � using Lepski’s method detailed in Section 6.2. For this
construction, it suffices to know an upper bound σmax on the operator norm ‖�‖1/2

op . The
resulting estimator has an error of the order σmax(

√
p/n + √

ε).
One can also consider intermediate cases, in which the covariance matrix is not arbitrary

but has a more general form than the simple isotropic one. In such a situation, it might be of
interest to extend the method proposed in Algorithm 1 by using an initial estimator of � and
by updating its value at each step. Indeed, when a weight vector is computed, it can be used
for updating not only the mean but also the covariance matrix. The study of this estimator is
left for future research.

7. Empirical results. This section showcases empirical results obtained by applying the
iteratively reweighted mean estimator described in Algorithm 1 to synthetic data sets. We
stress right away that there are multiple ways of solving the optimization problem involved
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in Algorithm 1, and the implementation we used in our experiments is not the most efficient
one. As already mentioned, the aforementioned optimization problem can be seen as a semi-
definite program and out-of-shelf algorithm can be applied to solve it. We implemented this
approach in R using the MOSEK solver. All of the results reported in this section are obtained
using this implementation. We are currently working on an improved implementation using
the dual subgradient algorithm of Cox, Juditsky and Nemirovski (2014).

We applied Algorithm 1 to X1, . . . ,Xn from Pn ∈ GAC(μ∗,�, ε) with various types of
contamination schemes. In the numerical experiments below, we illustrate (a) the evolution
of the estimation error along the iterations, (b) the properties related to the theoretical break-
down point and (c) the performance of the estimator obtained from Algorithm 1 as compared
to some simple estimators of the mean and to the oracle. In this section, the error of estimation
is understood as the Euclidean distance between the estimated mean and its true value.

Notice that, due to the equivariance stated in Fact 2, it is sufficient to take as the true target
mean vector μ∗ the zero vector 0p and as � any diagonal matrix with nonnegative entries.
We consider the following two schemes of outlier generation:

• Contamination by “smallest” eigenvector: Sample n i.i.d. observations Y 1, . . . ,Y n drawn
from N (0p, Ip) and compute the smallest eigenvalue λp and the corresponding eigenvector
vp of the sample covariance matrix, defined as

�̂n = 1

n

n∑
i=1

(Y i − Y n)
⊗2,

where Y n
def= (Y 1 + · · · + Y n)/n. Choose the nε observations from Y 1, . . . ,Y n that have

the highest (in absolute value) correlation coefficient with vp and replace them by a vector
proportional to vp with proportionality coefficient equal to

√
p.

• Uniform outliers: Sample n observations according to this model

Y i = θ i + ξ i , with ξ i

i.i.d.∼ N (0p, Ip) for i = 1, . . . , n,

where θ is are all-zero vectors for n(1−ε) observations i ∈ I = {1, . . . , n(1−ε)}, while for
the indices i /∈ I we have ‖θ i‖2 �= 0. We take the values of {θ i}i∈O to be i.i.d. from uniform

distribution, that is, for i /∈ I we take {θ j
i }pj=1

i.i.d.∼ U[a, b]. We took different values of a

and b in different experiments reported below.

7.1. Improvement along iterations. In this experiment, we show the improvement of the
estimation error along the iterations. The data for this experiment were generated according
to the second contamination scheme mentioned above with a = 0.5 and b = 2. In Figure 2, we
drew the logarithm of the estimation error (i.e., the risk between μ̂n and μ∗) as a function of
the iteration number. The results are obtained by averaging over 50 independent repetitions.
We observe that the error decreases very fast during the first iteration and remains almost
constant during the rest of time. As a matter of fact, in order to speed-up the procedure, we
can stop the iterations if the current weights w satisfy λmax(

∑
i wi(Xi −X̄w)⊗2 −�) ≤ ε. It is

easy to check that this modified estimator still possesses all the desirable properties described
in previous sections.

7.2. Breakdown point. The goal of this experiment is to check empirically the validity

of the breakdown point ε∗ def= (5 − √
5)/10 ≈ 0.28. To this end, we chose to contaminate the

standard normal vectors by “smallest” eigenvector scheme. Note that if the outliers are well
separated from the inliers, like in the uniform outliers scheme, then Algorithm 1 detects well
these outliers by pushing their weights to 0 even when ε is large (larger than 0.28).
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FIG. 2. The decay of the error along the iterations for p = 9, ε = 0.2 and different values of n. The contamina-
tion scheme is “uniform outliers” with (a, b) = (0.5,2).

For n = 500 and p = 5, we conducted 50 independent repetitions of the experiment and
plotted the error averaged over these 50 repetitions in Figure 3. For ε > 0.28, we manually
set the number of iterations to7 30. It is interesting to observe that there is a clear change in
the mean error occurring at a value close to 0.28. This empirical result allows us to conjecture
that the breakdown point of the presented estimator is indeed close to 0.28.

7.3. Comparison with other estimators. In this last experiment, we wanted to provide a
visual illustration of the performance of the proposed estimator μ̂IR

n as compared to some
simple competitors: the sample mean, the coordinatewise median, the geometric median and
the oracle obtained by averaging all the inliers. The obtained errors, averaged over 50 in-
dependent repetitions, are depicted in Figure 4 and Figure 5. The former corresponds to
n = 500, p = 20 and varying ε, while the parameters of the latter are p = 10, ε = 0.1 and
n ∈ [10,1000]. In the legend of these figures, Estimated Mu refers to μ̂IR

n , the output of
Algorithm 1, Sample Mean and Sample Median correspond respectively to the sam-
ple mean and sample coordinatewise median, Geometric Median refers to the estimator
defined in (4) and Oracle refers to the sample mean of inliers only.

The plots show that the iteratively reweighted mean estimators have an error, which is
nearly as small as the error of the oracle. These errors are way smaller than the errors of the
other estimators included in this experiment, which is in line with all the existing theoretical
results.

FIG. 3. The error as a function of the contamination rate ε for n = 500 and p = 5. The contamination scheme
is “smallest” eigenvector. The number of iterations for ε > ε∗ was set to 30.

7Since the number of iteration K is well-defined for ε ≤ ε∗
r ≈ 0.28.
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FIG. 4. �2-loss for different estimators when n = 500,p = 20 and the uniform outliers scheme with a = 4 and
b = 10.

8. Postponed proofs. We collected in this section all the technical proofs postponed
from the Section 3 and Section 5. Throughout this section, we will always assume that
λmax(�) = ‖�‖op = 1. As we already mentioned above, the general case can be reduced

to this one by dividing all the data vectors by ‖�‖1/2
op . The proofs in this section are presented

according to the order of the appearance of the corresponding claims in the previous sec-
tions. Since the proof of Theorem 1 relies on several lemmas and propositions, we provide in
Figure 6 a diagram showing the relations between these results.

8.1. Additional details on (8). One can check that

n∑
i=1

w∗
i

(
Xi − μ̂k−1)⊗2 =

n∑
i=1

w∗
i (Xi − X̄w∗)⊗2 + (

X̄w∗ − μ̂k−1)⊗2

�
n∑

i=1

w∗
i

(
Xi − μ∗)⊗2 + ∥∥X̄w∗ − μ̂k−1∥∥2

2Ip.

This relation, combined with ‖X̄w∗ − μ̂k−1‖2 ≤ ‖ζ̄ w∗‖2 + ‖μ∗ − μ̂k−1‖2, yields

G
(
w∗, μ̂k−1) ≤ G

(
w∗,μ∗) + (‖ζ̄ w∗‖2 + ∥∥μ∗ − μ̂k−1∥∥

2

)2
.

To get the last line of (8), it suffices to apply the elementary consequence of the Minkowskii
inequality

√
a + (b + c)2 ≤ √

a + b2 + c, for every a, b, c > 0.

FIG. 5. �2-loss for different estimators when p = 10, ε = 0.1 and the uniform outliers scheme with a = 4 and
b = 10.
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FIG. 6. A diagram showing the relation between different lemmas and propositions used in the proof of Theo-
rem 1.

8.2. Rough bound on the error of the geometric median. This subsection is devoted to
the proof of an error estimate of the geometric median. This estimate is rather crude, in terms
of its dependence on the sample size, but it is sufficient for our purposes. As a matter of fact,
it also shows that the breakdown point of the geometric median is equal to 1/2.

LEMMA 2. For every ε ≤ 1/2, the geometric median satisfies the inequality ‖μ̂GM
n −

μ∗‖2 ≤ 2
n(1−2ε)

∑n
i=1 ‖ζ i‖2. Furthermore, ‖μ̂GM

n − μ∗‖L2 ≤ 2r1/2
� /(1 − 2ε).

PROOF. Without loss of generality, we assume that μ∗ = 0. We also assume that nε

is an integer. The definition of the geometric median implies that
∑n

i=1 ‖Xi − μ̂GM
n ‖2 ≤∑n

i=1 ‖Xi − μ∗‖2 = ∑n
i=1 ‖Xi‖2. Therefore, we have the simple bound

n(1 − ε)
∥∥μ̂GM

n

∥∥
2 ≤ ∑

i∈I

(∥∥Xi − μ̂GM
n

∥∥
2 + ‖ζ i‖2

)

≤
n∑

i=1

∥∥Xi − μ̂GM
n

∥∥
2 + ∑

i∈I
‖ζ i‖2 − ∑

i∈O

∥∥Xi − μ̂GM
n

∥∥
2

≤
n∑

i=1

‖Xi‖2 + ∑
i∈I

‖ζ i‖2 − ∑
i∈O

∥∥Xi − μ̂GM
n

∥∥
2

≤ 2
∑
i∈I

‖ζ i‖2 + ∑
i∈O

(‖Xi‖2 − ∥∥Xi − μ̂GM
n

∥∥
2

)
≤ 2

∑
i∈I

‖ζ i‖2 + nε
∥∥μ̂GM

n

∥∥
2,

where the first and the last inequalities follow from triangle inequality. We infer that

∥∥μ̂GM
n

∥∥
L2

≤ 2

n(1 − 2ε)

n∑
i=1

‖ζ i‖L2 ≤ 2

1 − 2ε
‖ζ 1‖L2 ≤ 2r1/2

�

1 − 2ε

and we get the claim of the lemma. �
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8.3. Proof of Proposition 1. To ease notation throughout this proof, we write ε̄ instead
of εw . Simple algebra yields

X̄w − μ∗ − ζ̄ wI = X̄wI + X̄wIc − μ∗ − ζ̄ wI

= (1 − ε̄)μ∗ + ζ̄ wI + X̄wIc − μ∗ − ζ̄ wI

= X̄wIc − ε̄μ∗ = X̄wIc − ε̄X̄w + ε̄
(
X̄w − μ∗).

This implies that (1 − ε̄)(X̄w − μ∗) − ζ̄ wI = X̄wIc − ε̄X̄w , which is equivalent to X̄w −
μ∗ − ζ̄ w|I = (X̄wIc − ε̄X̄w)/(1 − ε̄). Therefore, we have

∥∥X̄w − μ∗ − ζ̄ w|I
∥∥

2 = ‖X̄wIc − ε̄X̄w‖2

1 − ε̄
= 1

1 − ε̄

∥∥∥∥∑
i∈Ic

wi(Xi − X̄w)

∥∥∥∥
2

= 1

1 − ε̄
sup

v∈Sp−1

∑
i∈Ic

wiv
	(Xi − X̄w).

(17)

Using the Cauchy–Schwarz inequality as well as the notation Mi = (Xi − X̄w)⊗2 and M =∑n
i=1 wiMi , we get{∑

i∈Ic

wiv
	(Xi − X̄w)

}2
≤ ∑

i∈Ic

wi

∑
i∈Ic

wi

∣∣v	(Xi − X̄w)
∣∣2 = ε̄v	 ∑

i∈Ic

wiMiv

= ε̄v	
n∑

i=1

wiMiv − v	 ∑
i∈I

wiMiv

= ε̄v	(M − �)v + ε̄v	
(
� − ∑

i∈I
wiMi

)
v

≤ ε̄λmax(M − �) + ε̄

{
v	�v − v	 ∑

i∈I
wiMiv

}
.

(18)

Finally, for any unit vector v,

v	 ∑
i∈I

wiMiv = (1 − ε̄)v	 ∑
i∈I

(w|I)i(Xi − X̄w)⊗2v

≥ (1 − ε̄)v	 ∑
i∈I

(w|I)i(Xi − X̄w|I )⊗2v

= (1 − ε̄)v	 ∑
i∈I

(w|I)i(ζ i − ζ̄ w|I )⊗2v

= (1 − ε̄)v	 ∑
i∈I

(w|I)iζ iζ
	
i v − (1 − ε̄)

(
v	ζ̄ w|I

)2

≥ (1 − ε̄)

(
v	�v − λmax

(∑
i∈I

(w|I)i
(
� − ζ iζ

	
i

)) − ‖ζ̄ w|I‖2
2

)
.

(19)

Combining (18) and (19), we get{∑
i∈Ic

wiv
	(Xi − μ)

}2
≤ ε̄λmax(M − �) + ε̄2λmax(�)

+ ε̄(1 − ε̄)

{
λmax

(∑
i∈I

(w|I)i
(
� − ζ iζ

	
i

)) + ‖ζ̄ w|I‖2
2

}
.
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In conjunction with (17), this yields

∥∥X̄w − μ∗ − ζ̄ w|I
∥∥

2 ≤
√

ε̄

1 − ε̄

(
λmax(M − �) + ε̄λmax(�)

+ (1 − ε̄)

{
λmax

(∑
i∈I

(w|I)i
(
� − ζ iζ

	
i

)) + ‖ζ̄ w|I‖2
2

})1/2
.

From this relation, using the triangle inequality and the inequality
√

a1 + · · · + an ≤ √
a1 +

· · · + √
an, we get

∥∥X̄w − μ∗∥∥
2 ≤ ‖ζ̄ w|I‖2 +

√
ε̄

1 − ε̄
λ

1/2
max,+(M − �) + ε̄‖�‖1/2

op

1 − ε̄

+
√

ε̄

1 − ε̄
λ

1/2
max,+

(∑
i∈I

(w|I)i
(
� − ζ iζ

	
i

)) +
√

ε̄

1 − ε̄
‖ζ̄ w|I‖2

and, after rearranging the terms, the claim of the proposition follows.

8.4. Proof of Lemma 1. Claim (i) of this lemma is straightforward. For (ii), we use the
fact that the compact convex polytope Wn,� is the convex hull of its extreme points. The fact
that each uniform weight vector uJ is an extreme point of Wn,� is easy to check. Indeed, if
for two points w and w′ from Wn,� we have uJ = 0.5(w + w′), then we necessarily have
wJ c = w′

J c = 0. Therefore, for any j ∈ J ,

1

�
≥ wj = 1 − ∑

i∈J\{j}
wi ≥ 1 − (� − 1) × 1

�
= 1

�
.

This implies that wj = 1
�
1(j ∈ J ). Hence, w = uJ and the same is true for w′. Hence, uJ is

an extreme point. Let us prove now that all the extreme points of Wn,� are of the form uJ

with |J | = �. Let w ∈ Wn,� be such that one of its coordinates is strictly positive and strictly
smaller than 1/�. Without loss of generality, we assume that the two smallest nonzero entries
of w are w1 and w2. We have 0 < w1 < 1/� and 0 < w2 < 1/�. Set ρ = w1 ∧ w2 ∧ {1/� −
w1} ∧ {1/� − w2}. For w+ = w + (ρ,−ρ,0, . . . ,0) and w− = w − (ρ,−ρ,0, . . . ,0), we
have w+,w− ∈ Wn,� and w = 0.5(w+ + w−). Therefore, w is not an extreme point of Wn,�.
This completes the proof of (ii).

Claim (ii) implies that Wn,� = {∑|J |=� αJ uJ : α ∈ �K−1} with K = ( n
�

)
. Hence,

sup
w∈Wn,�

G(w) = sup
α∈�K−1

G

( ∑
|J |=�

αJ uJ

)
≤ sup

α∈�K−1

∑
|J |=�

αJ G
(
uJ ) ≤ max|J |=�

G
(
uJ )

and claim (iii) follows.
To prove (iv), we check that

‖wI‖1 = ∑
i∈I

wi = 1 − ∑
i /∈I

wi ≥ 1 − |I c|
�

≥ 1 − n − �′

�
= � + �′ − n

�
.

This readily yields (w|I )i ≤ 1/(� + �′ − n), which leads to the claim of item (iv).

8.5. Moments of suprema over Wn,� of weighted averages of Gaussian vectors. We recall
that ξ i ’s, for i = 1, . . . , n are i.i.d. Gaussian vectors with zero mean and identity covariance
matrix, and ζ i = �1/2ξ i . In addition, the covariance matrix � satisfies ‖�‖op = 1.
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LEMMA 3. Let p ≥ 1, n ≥ 1, m ∈ [2,0.562n] and o ∈ [0,m] be four positive integers. It
holds that

E1/2
[

sup
w∈Wn,n−m+o|I |≥n−o

‖ζ̄ w|I ‖2

2

]
≤ √

r�/n

(
1 + 7

√
m

2n

)
+ 4.6m

n

√
log(ne/m).

PROOF OF LEMMA 3. We have

sup
w∈Wn,n−m+o

‖ζ̄ w|I ‖2
(a)≤ sup

w∈Wn,n−m

‖ζ̄ w‖2
(b)≤ max|J |=n−m

‖ζ̄ uJ ‖2,

where (a) follows from claim (iv) of Lemma 1 and (b) is a direct consequence of claim (iii)
of Lemma 1. Thus, we get

sup
w∈Wn,n−m+o

‖ζ̄ w|I ‖2 ≤ max|J |=n−m
‖ζ̄ uJ ‖2 = 1

n − m
max|J |=n−m

∥∥∥∥∑
i∈J

ζ i

∥∥∥∥
2

≤ 1

n − m

∥∥∥∥∥
n∑

i=1

ζ i

∥∥∥∥∥
2

+ 1

n − m
max
|J̄ |=m

∥∥∥∥∑
i∈J̄

ζ i

∥∥∥∥
2
.

(20)

On the one hand, one readily checks that

E

[∥∥∥∥∥
n∑

i=1

ζ i

∥∥∥∥∥
2

2

]
= nr�.(21)

On the other hand, it is clear that for every J̄ of cardinality m, the random variable
‖∑

i∈J̄ ζ i‖2
2 has the same distribution as m

∑p
j=1 λj (�)ξ2

j , where ξ1, . . . , ξp are i.i.d. stan-
dard Gaussian. Therefore, by the union bound, for every t ≥ 0, we have

P
(

max
|J̄ |=m

∥∥∥∥∑
i∈J̄

ζ i

∥∥∥∥2

2
> m(2r� + t)

)
≤

(
n

m

)
P

(∥∥∥∥∥
m∑

i=1

ζ i

∥∥∥∥∥
2

2

> m(2r� + t)

)

=
(

n

m

)
P

( p∑
j=1

λj (�)ξ2
j > 2r� + t

)
≤

(
n

m

)
e−t/3,

where the last line follows from a well-known bound on the tails of the generalized χ2-
distribution; see, for instance, Comminges and Dalalyan (2012), Lemma 8.

Therefore, setting Z = 1
m

max|J |=m ‖∑
i∈J ζ i‖2

2 − 2r� and using the well-known identity
E[Z] ≤ E[Z+] = ∫ ∞

0 P(Z ≥ t) dt , we get

E
[

max
|J̄ |=m

1

m

∥∥∥∥∑
i∈J̄

ζ i

∥∥∥∥2

2

]
≤ 2r� +

∫ ∞
0

1 ∧
(

n

m

)
e−t/3 dt

= 2r� + 3 log
(

n

m

)
+

(
n

m

)∫ ∞
3 log

⎛⎝n

m

⎞⎠ e−t/3 dt(22)

≤ 2r� + 3m log(ne/m) + 3 ≤ 2r� + 3.9m log(ne/m),

where the last two steps follow from the inequality log
( n
m

) ≤ m log(ne/m) and the fact that
m ≥ 2, m log(ne/m) ≥ n infx∈[2/n,1] x(1 − logx) ≥ 2(1 − log(2/n)) ≥ 10/3. Combining (20),
(21) and (22), we arrive at(

E
[

sup
w∈Wn,n−m+o|I |≥n−o

‖ζ̄ w|I ‖2

2

])1/2 ≤ √
r�/n

(
1 + m

n − m
+

√
2mn

n − m

)
+ 4.6m

n

√
log(ne/m).
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Finally, note that for α = m/n ≤ 0.562, we have

m

n − m
+

√
2mn

n − m
=

√
m

2n

(√
2mn

n − m
+ 2n

n − m

)
=

√
m

2n

( √
2α

1 − α
+ 2

1 − α

)
≤ 7

√
m

2n
.

This completes the proof of the lemma. �

8.6. Moments and deviations of singular values of Gaussian matrices. Let ζ 1, . . . , ζ n

be i.i.d. random vectors drawn from Np(0,�) distribution, where � is a p × p covariance
matrix. We denote by ζ 1:n the p × n random matrix obtained by concatenating the vectors
ζ i . Recall that smin(ζ 1:n) = λ

1/2
min(ζ 1:nζ	

1:n) and smax(ζ 1:n) = λ
1/2
max(ζ 1:nζ	

1:n) are the smallest
and the largest singular values of the matrix ζ 1:n.

LEMMA 4 (Vershynin (2012), Theorem 5.32 and Corollary 5.35). Let λmax(�) = 1. For
every t > 0 and for every pair of positive integers n and p, we have

E
[
smax(ζ 1:n)

] ≤ √
n + √

r�, P
(
smax(ζ 1:n) ≥ √

n + √
r� + t

) ≤ e−t2/2.

If, in addition, � is the identity matrix, then

E
[
smin(ζ 1:n)

] ≥ (
√

n − √
p)+, P

(
smin(ζ 1:n) ≤ √

n − √
p − t

) ≤ e−t2/2.

The corresponding results in Vershynin (2012) treat only the case of identity covariance
matrix; however, the proof presented therein carries with almost no change over the case of
an arbitrary covariance matrix. These bounds allow us to establish the following inequalities.

LEMMA 5. For a subset J̄ of {1, . . . , n}, we denote by ζ J̄ the p×|J̄ | matrix obtained by
concatenating the vectors {ζ i : i ∈ J̄ }. Let the covariance matrix � be such that λmax(�) = 1.
For every pair of integers n,p ≥ 1 and for every integer m ∈ [1, n], we have

E
[
s2

max(ζ 1:n)
] ≤ (

√
r� + √

n)2 + 4,
(23)

E
[(

smax(ζ 1:n)2 − n
)
+
] ≤ 6

√
nr� + 4r�, ∀n ≥ 8,

E
[(

n − smin(ξ1:n)2)
+
] ≤ 6

√
np, ∀n ≥ 8,

(24)
E
[

max
|J̄ |=m

s2
max(ζ J̄ )

]
≤ (√

r� + √
m + 1.81

√
m log(ne/m)

)2 + 4.

The proof of this lemma is presented in the supplementary material (Dalalyan and Mi-
nasyan (2022)).

LEMMA 6. There is a constant A1 > 0 such that for every pair of integers n ≥ 8 and
p ≥ 1 and for every covariance matrix � such that λmax(�) = 1, we have

E
[∥∥ζ 1:nζ	

1:n − n�
∥∥

op

] ≤ A1(
√

n + √
r�)

√
r�,(25)

E
[
λmax,+

(
ζ 1:nζ	

1:n − n�
)] ≤ 6

√
np + 4p,(26)

E
[
λmax,+

(
n� − ζ 1:nζ	

1:n
)] ≤ 6

√
np,(27)

where the last inequality is valid under the additional assumption p ≤ n. Furthermore, there
is a constant A2 > 0 such that

P
(∥∥ζ 1:nζ	

1:n − n�
∥∥

op − E
[∥∥ζ 1:nζ	

1:n − n�
∥∥

op

] ≥ A2(
√

tn + √
tr� + t)

) ≤ e−t , ∀t ≥ 1.
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PROOF. Inequality (25) and the last claim of the lemma are respectively Theorems 4 and
5 in Koltchinskii and Lounici (2017). Let us prove the two other claims. Since ζ i = �1/2ξ i

where ξ i’s are i.i.d. N (0, Ip), we have

λmax,+
(
ζ 1:nζ	

1:n − n�
) ≤ λmax,+

(
ξ1:nξ	

1:n − nIp

) = (
smax(ξ1:n)2 − n

)
+.

Inequality (26) now follows from (23) applied in the case of an identity covariance matrix so
that r� = p. Similarly, (27) follows from (24) using the same argument. �

8.7. Moments of suprema over Wn,� of weighted centered Wishart matrices. The next
lemma, the proof of which is deferred to the supplementary material, provides the in-
expectation bounds of the stochastic error.

LEMMA 7. Let p ≥ 2, n ≥ 4 ∨p, m ∈ [2,0.6n] and o ≤ m be four integers. It holds that

E

[
sup

w∈Wn,n−m+o|I |≥n−o

λmax,+
(
� −

n∑
i=1

(w|I )iζ iζ
	
i

)]
≤ 25

√
p/n + 33(m/n) log(n/m).

Furthermore, for any p ≥ 1, n ≥ 1, m ∈ [2,0.6n] and o ≤ m,

E

[
sup

w∈Wn,n−m+o|I |≥n−o

∥∥∥∥∥� −
n∑

i=1

(w|I )iζ iζ
	
i

∥∥∥∥∥
op

]
≤ (5.1A1 + 2.5A2)

√
r�

n
+ 7.5A2

m log(ne/m)

n
,

where A1 and A2 are the same constants as in Lemma 6.

8.8. Proof of Proposition 2. Throughout this proof, supw,I stands for the supremum over
all w ∈ Wn(ε) and over all I ⊂ {1, . . . , n} of cardinality larger than or equal to n(1 − ε). We
recall that, � = supw,I R(ζ ,w, I ) where for any subset I of{1, . . . , n},

R(ζ ,w, I ) = 2εw + √
2εwλ

1/2
max,+

(∑
i∈I

(w|I )i
(
� − ζ iζ

	
i

)) + (1 + √
2εw)‖ζ̄ w|I ‖2.

Furthermore, as already mentioned earlier, for every w ∈ Wn(ε), εw ≤ ε/(1−ε) ≤ 1.5ε. This
implies that

E1/2[�2] ≤ 3ε + (1 + √
3ε)E1/2

[
sup
w,I

‖ζ̄ w|I ‖2
2

]
+ √

3εE1/2
[
sup
w,I

λmax,+
(∑

i∈I

(w|I )i
(
� − ζ iζ

	
i

))]
.

(28)

As proved in Lemma 3 (by taking m = 2o and o = nε),

E1/2
[
sup
w,I

‖ζ̄ w|I ‖2
2

]
≤ √

r�/n(1 + 7
√

ε) + 9.2ε
√

log(2/ε).(29)

In addition, in view of the first claim of Lemma 7 (with m = 2o and o = nε), stated and
proved in the last section, we have

E
[
sup
w,I

λmax,+
(∑

i∈I

(w|I )i
(
� − ζ iζ

	
i

))] ≤ 25
√

p/n + 66ε log(1/2ε).(30)
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Combining (28), (29) and (30), we get

E1/2[�2] ≤ 3ε + (1 + √
3ε)

(√
p/n(1 + 7

√
ε) + 9.2ε

√
log(2/ε)

)
+ √

3ε
(
25

√
p/n + 66ε log(1/2ε)

)1/2

≤ √
p/n(1 + 16

√
ε) + 18ε

√
log(2/ε) + √

3ε
(
25

√
p/n + 66ε log(1/2ε)

)1/2
.

This leads to (16). To obtain (15), we repeat the same arguments but use the second claim of
Lemma 7 instead of the first one.
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SUPPLEMENTARY MATERIAL

Proofs of some lemmas and theorems (DOI: 10.1214/21-AOS2145SUPP; .pdf). In this
supplement, we provide the proofs of Lemmas 5 and 7, Theorems 2–4, as well as formalize
a precise lower bound for the Gaussian model with adversarial contamination.
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